찾아보고 싶은 뉴스가 있다면, 검색
검색
최근검색어
  • NASA
    2026-02-07
    검색기록 지우기
저장된 검색어가 없습니다.
검색어 저장 기능이 꺼져 있습니다.
검색어 저장 끄기
전체삭제
6,268
  • [아하! 우주] 영화 ‘돈 룩 업’ 현실로? 지름 1㎞ 소행성, 지구로 향한다

    [아하! 우주] 영화 ‘돈 룩 업’ 현실로? 지름 1㎞ 소행성, 지구로 향한다

    오는 18일(미국 동부시간) 오후, 대형 소행성이 지구 가까이에 접근할 것으로 보인다고 미국항공우주국(NASA)이 밝혔다. NASA 지구근접물체연구센터(CNEOS)에 따르면 ‘7482(1994 PC1)’로 명명된 이 소행성은 지름이 약 1㎞에 달한다. 세계에서 가장 높은 건물인 아랍에미리트 두바이의 부르즈 할리파(828m)보다 170m가량이 더 큰 셈이다. 이 소행성은 시속 약 7만㎞의 빠른 속도로 이동하고 있으며, 지구와 가장 가까워지는 시간은 미국 동부시간 기준 1월 18일 오후 4시 51분(한국시간 19일 오전 5시 51분)으로 예상된다. 소행성은 지구와 달 표면의 거리(38만 3000㎞)의 약 5.15배에 달하는 약 192만㎞ 떨어진 우주 상공을 지날 예정이다. 따라서 지구와 충돌할 위험은 거의 없는 것으로 간주된다. 소행성의 밝기는 약 10등급으로, 지구 일부 지역에서 망원경을 이용해 소행성이 지나가는 모습을 볼 수 있다. 지구와 근접하게 지나가는 다음 시기는 2105년이다. 1994년 호주의 천문학자가 최초로 발견한 이 소행성은 대부분이 암석으로 이뤄졌다. 전문가들은 소행성이 지구와 최대로 가까워질 때 수집한 정보를 분석한다면 고대 우주 암석에 대해 더 많은 것을 알아낼 수 있을 것으로 기대하고 있다.이 소행성은 지구와의 충돌 가능성의 ‘제로’에 가깝지만, 모든 소행성이 안전한 것은 아니다. 소행성이 지구와 충돌할 경우 막대한 피해를 줄 수 있다. 실제로 1908년 시베리아 퉁그스카에 크기 60m 운석이 떨어져 서울시 면적 3배 숲이 사라졌다. NASA에 따르면 크기 140m 이상인 소행성이 100년 안에 지구와 충돌할 가능성은 없다. 다만 현재까지 100~300m 크기의 근지구 소행성은 약 16%만 발견됐기 때문에 미래를 위한 적극적인 대비가 필요하다. NASA는 한국 등 여러 국가의 전문가들과 함께 ‘쌍(雙)소행성 궤도수정 시험’(DART, 이하 다트)을 운영하고 있다. 다트 우주선은 지난해 11월 스페이스X 팰컨9 로켓에 실려 우주로 발사됐다. 다트 우주선의 목표물은 소행성 디모르포스다. 다트 우주선은 내년 9월 말쯤 축구경기장 크기의 소행성 디모르포스에 충돌해 공전주기를 바꿔 궤도를 변경할 수 있는지를 실험한다. 린들리 존슨 NASA 행성방위담당관은 CNN과 한 인터뷰에서 “당장 지구를 위협하는 소행성은 없지만, 이 실험을 통해 장차 소행성을 회피해 지구를 지키는 능력을 갖추게 될 것”이라고 밝혔다.
  • [와우! 과학] MIT 괴짜들, 달 표면에 비행접시 띄운다

    [와우! 과학] MIT 괴짜들, 달 표면에 비행접시 띄운다

    2021년 한 해를 돌아볼 때 태양계 탐사 부분에서 있었던 가장 큰 쾌거는 화성 헬리콥터 인제뉴어티의 비행 성공이었다. 인류가 역사상 최초로 지구가 아닌 다른 행성의 대기에서 동력 비행에 성공한 것이다. 하지만 인제뉴어티의 성공은 시작에 지나지 않는다. 미 항공우주국(NASA)의 과학자들은 토성의 위성 타이탄, 금성, 그리고 화성 같이 대기를 지닌 행성에 다양한 형태의 항공기나 풍선형 탐사선을 개발하고 있다. 하늘을 날 수 있으면 탐사할 수 있는 범위가 극적으로 늘어나 작은 탐사선으로도 많은 정보를 수집할 수 있기 때문이다. 그런데 미 매사추세츠공대(MIT)의 과학자들은 더 놀라운 목표에 도전하고 있다. 바로 달처럼 대기가 없는 위성이나 혹은 소행성에 탐사선을 띄우는 것이다. 물론 대기가 없어도 로켓을 이용하면 탐사선을 공중에 띄울 순 있으나 많은 연료가 소모되기 때문에 금방 다시 착륙해야 한다. MIT 연구팀의 목표는 로켓 없이 탐사선을 달 표면에 살짝 띄워 날아다니는 것이다. 원리는 생각보다 간단하다. 바로 정전기적 반발력(electrostatic repulsion)을 이용하는 것이다.  달 표면은 태양으로부터 받는 강력한 에너지와 고에너지 우주 방사선에 항상 노출돼 있다. 따라서 달 표면에 있는 고운 먼지 입자인 레골리스는 양극 전하를 띄고 있다. 여기에 양극 전하를 띈 물체가 있으면 정전기적 반발력에 의해 공중에 뜨게 된다. 물론 그 힘은 얼마 되지 않지만, 달의 중력 역시 지구의 6분의 1 정도로 약하고 공기 저항이나 바람의 흐름처럼 방해물도 없기 때문에 정전기의 힘으로도 작은 탐사선이 비행할 수 있다는 것이 연구팀의 생각이다. 참고로 비행접시처럼 얇은 원반 같은 외형 역시 가능한 표면적을 늘려 정전기적 반발력을 크게 하기 위한 것이다. 연구팀은 이온 빔을 이용해 실험실에서 60g 정도 되는 비행체를 공중에 띄우는 실험을 진행했다. 연구팀에 따르면 907g 정도 되는 미니 탐사선을 달 표면 위에 1㎝ 높이로 띄우는 일은 어렵지 않다. 문제는 크기를 키우고 비행에 적합한 높이까지 비행체를 띄우는 일이다. 만약 이 연구가 성공한다면 사실은 달보다는 작은 소행성에서 더 유용한 기술이 될 것이다. 소행성의 표면 중력은 매우 작아서 약간의 힘만으로도 충분한 비행 고도를 유지할 수 있기 때문이다. 다만 비행 고도가 조금만 높아져도 힘이 급격히 약해진다는 점, 비행 중 방향 전환이나 앞으로 나가기 위해서는 별도의 힘이 필요하다는 점 등이 극복해야 할 과제로 생각된다. MIT의 괴짜들이 과연 의미 있는 결과물을 내놓을 수 있을지 미래가 주목된다.
  • [아하! 우주] ‘인류의 눈’ 제임스웹, 최고난도 작업 태양가림막 전개 성공

    [아하! 우주] ‘인류의 눈’ 제임스웹, 최고난도 작업 태양가림막 전개 성공

    인류의 눈이 될 제임스웹 우주망원경(JWST·이하 웹)의 50여 개 전개작업 중 최고 난도를 자랑하는 태양 가림막 펼치기가 마침내 완벽하게 전개됐다. 100억 달러(한화 12조원) 규모의 우주천문대 웹은 지난 12월 31일(이하 미국동부시간) 거대한 태양 가림막을 펼치기 시작해 두 개의 걸침대를 순차적으로 전개해 5층 구조의 가림막을 조심스럽게 펼쳤다. “다이아몬드처럼 밝게 빛나라. 우리 오른쪽 가림막 걸침대의 성공적인 전개로 웹의 태양 가림막은 이제 우주에서 다이아몬드 모양을 취했다”고 임무 팀원은 웹의 트위터 계정을 통해 지난밤 밝혔다.태양 가림막은 초기 우주에서 오는 희미한 열 신호를 찾기 위해 12월 25일 발사된 웹의 가장 중요하고 복잡한 기능 중 하나이다. 이런 신호를 감지하려면 웹의 기기와 광학 장치를 극도로 차갑게 유지해야 하는데, 태양 가림막이 햇빛을 막아줌으로써 웹을 절대온도에 가깝도록 차갑게 유지해준다.  반짝이는 은색 방패는 완전히 펼쳤을 때 길이 21.2m, 너비 14.2m로, 거의 테니스장만 하다. 따라서 차곡차곡 접힌 채 로켓의 페이로드 페어링 안에 탑재된다. 웹이 우주로 진출한 후에 가림막이 펼쳐지도록 설계된 것이다.태양 가림막의 전개는 매우 복잡하고 정교한 과정으로, 자칫 무엇 하나 잘못되기라도 하면 웹 임무는 100억 달러를 우주공간으로 흩뿌리고 막을 내리게 된다. 주계약자인 노스럽 그러먼에서 근무하는 웹 시스템 기술자 크리스털 푸가는 “웹 가림막 구조 속에는 140개의 이탈장치와 70개의 경첩 조립체, 400개의 도르래 장치, 총 400m의 케이블 90개와 8개의 전개 모터가 있으며, 이 모두가 5장의 펼침막이 계획대로 전개되도록 작동해야 한다”고 설명했다. 태양 가림막의 전개작업은 웹이 5층 구조의 가림막을 고정하는 2개의 팔레트를 내린 12월 28일 시작됐으며, 다음 며칠 동안 추가 단계가 수행됐다. 예컨대, 12월 30일에 웹은 우주로 발사되는 동안 가림막을 보호했던 덮개를 벗겨냈다. 그 덮개는 12월 31일의 작업을 약간 복잡하게 했다. 웹 팀은 계획한 대로 덮개가 완전히 감겨 제거됐는지 확인하기 위해 걸침대 전개를 몇 시간 지연해야만 했다. 메릴랜드주 그린벨트에 있는 미 항공우주국(NASA) 고다드 우주비행센터의 통신실 차장 패트릭 린치는 12월 31일 블로그 포스트에서 “덮개를 감아올린 것을 표시하는 스위치가 작동되지 않았다”고 밝혔다. 그러면서 “2차, 3차 감지 수단이 가림막이 제거됐다는 사실을 알려줬다. 온도 데이터는 센서를 통해 햇빛을 차단하는 가림막 덮개가 펼쳐진 것으로 나타났고, 자이로스코프 센서는 가림막 덮개 해제 장치가 활성화되는 것과 일치하는 동작을 나타냈다”고 설명했다. 웹 팀원은 오후 1시 30분 왼쪽 중간 걸침대 전개를 시작해 오후 4시 49분에 종료됐으며, 오후 6시 31분에는 우현 걸침대 전개가 시작돼 오후 10시 13분쯤에 완료됐다고 밝혔다.  가림막을 펼치는 것은 큰 이정표이므로 팀원들은 31일 성공 이후 크게 안도의 한숨을 쉬고 있을 것이다. 그러나 가림막 전개작업은 아직 완료되지 않았다. 5장의 얇은 캡톤 가림막은 임무 팀이 주말에 수행하는 것을 목표로 하는 적절한 장력을 유지해야 한다. 이 작업이 완료되면 웹의 보조 거울과 너비가 6.5m인 주경을 전개하는 데 초점이 맞춰진다. 이 작업은 빠르면 1월 7일까지 완료될 것으로 예상되지만, 지상 관제소에서 요원들이 직접 작업을 진행하므로 일정이 다소 지연될 수도 있다. 따라서 해당 목표가 충족되지 않더라도 놀라거나 걱정할 필요는 없다. 거울을 적절한 위치에 고정하면 웹의 복잡한 기본 전개 단계는 종료된다. 다음 주요 이정표는 발사 후 29일 동안 예정된 엔진 분사로, 웹은 최종 목적지인 태양-지구 라그랑주 2지점(L2) 주위의 궤도에 진입하게 된다. 지구로부터의 거리는 지구-달 거리의 약 4배인 150만㎞이다.  웹 팀원들은 망원경이 L2에 도착한 후에도 여전히 할 일이 많다. 예컨대, 웹의 주경 18개를 정확하게 정렬해 각 낱개 거울이 단일 집광 표면으로 기능하도록 하는 고난도 작업이 기다리고 있다. 거울 정렬은 150㎚(나노미터·10억분의 1m)의 정확도까지 완벽해야 한다. 참고로, 종이 한 장의 두께는 약 10만㎚이다.  정기적인 과학 작업은 발사 후 6개월 후인 2022년 여름에 시작될 것으로 예상된다. 그 후 최소 5년 동안 웹은 우주 최초의 별과 은하를 연구하고, 주변 외계행성의 대기에서 생명체 흔적인 화합물을 찾는 등 다양한 관측활동을 수행하게 된다.
  • 2021년 우주의 비밀을 들춰내다…우주 탐사 10대 뉴스

    2021년 우주의 비밀을 들춰내다…우주 탐사 10대 뉴스

    올해 우리는 더 많은 우주의 비밀을 들추어냈다. 우주에 대한 인류의 호기심은 내년에도 우리 태양계와 그 너머로 더 많은 탐사선을 날려보낼 것이다. 2021년은 우주 탐사의 역사에 있어 하나의 큰 이정표를 세운 해이다. 다양한 탐사 임무와 최첨단 장비 덕분에 천문학자들은 전례 없는 방식으로 우주를 깊숙이 들여다볼 수 있었다. 연구원들은 블랙홀에서 나오는 강력한 제트를 보기 위해 전 지구를 하나의 거대한 망원경으로 만들었다. 지구 규모의 전파간섭계를 구축했던 것이다. 태양계 탐사에서는 이전에는 과학자들의 눈을 피해 숨어 있던 위성들과 거대한 혜성을 발견하는 쾌거를 이루었다. 태양계의 최고 지존인 태양이 그동안의 침묵을 깨고 올해의 빅뉴스로 등장한 것도 특기할 만한 일이다.  1. 최대 혜성 '베르나디넬리-번스타인' 발견두 연구원이 참으로 우연히도 지금까지 발견된 것 중 최대의 혜성을 발견했다.대학원생인 페드로 베르나디넬리는 암흑 에너지 조사 데이터를 통해 해왕성 궤도 너머에 있는 대상을 찾다가 그가 연구하려고 계획한 것보다 태양에서 훨씬 멀리 떨어져 있는 천체를 발견했다. 그는 즉시 지도교수인 우주론자 게리 번스타인에게 살펴보라고 요청했다. 그것은 지금까지 과학에 알려진 어떤 것보다 훨씬 더 큰 혜성이었다. 일반적인 혜성보다 10배나 더 크고 천 배는 더 무거운 대혜성을 발견한 것이다. 게다가 이 혜성은 약 300만 년 전 인류의 조상인 루시가 지구상을 걸었던 이래로 태양 주위를 한 번도 돌지 않은 혜성이었다. 그들이 발견한 혜성은 2021년 6월 23일 공식적으로 '혜성'으로 지정되었으며, 발견자들의 이름을 따서 베르나디넬리-번스타인 혜성으로 명명되었다. 운이 좋다면 천문학자들은 10년만 기다리면 이 혜성이 태양에 접근하는 것을 볼 수도 있다. 혜성은 오르트 구름으로 알려진 태양계의 가장 먼 바깥쪽에서 날아왔다. 긴 타원형 궤도를 그리며 우리 태양계 가운데로 여행하고 있는 이 혜성은 태양 둘레를 한 바퀴 도는 데 수천 년이 걸린다. 과학자들은 2031년에 혜성이 지구에 가장 가까워지면 베르나디넬리-번스타인 혜성의 크기와 구성을 더 정확하게 읽어내려 할 것이다. 하지만 가장 가까운 거리에서 태양 둘레를 돌아나갈 때도 토성의 평균 궤도보다 더 멀 것이다. 2. 아마추어 천문가가 목성의 새 위성 발견태양계 최대의 큰 행성 주변에서 이전에 알려지지 않았던 새로운 위성이 발견되었다. 목성은 거대 행성이기 때문에 큰 중력으로 많은 천체들을 끌어당긴다. 지구에는 위성이 하나뿐이고, 화성에는 작은 위성이 두 개 있다. 그러나 목성은 현재 최소 79개의 위성 대가족을 거느리고 있는데, 놀라운 것은 천문학자들이 아직껏 찾아내지 못한 수십 또는 수백 개의 위성이 더 있을 수도 있다는 사실이다. 가장 최근의 사례로는 아마추어 천문학자 카이 리가 마우나 케아에 있는 구경 3.6m의 캐나다-프랑스-하와이 망원경(CFHT)으로 수집한 2003년 데이터 세트에서 이 목성의 위성에 대한 증거를 발견한 것이다. 그는 스바루라는 다른 망원경의 데이터를 사용하여 해당 천체가 목성의 중력에 묶여 있을 가능성을 확인했다. EJc0061이라고 불리는 이 천체는 목성 위성의 카르메(Carme) 그룹에 속하는데, 그들은 목성 궤도면에 대해 극도로 기울어진 목성의 자전 방향과 반대 방향으로 공전하는 무리이다.  3. 과연 생명체가 있을까? 다시 각광받는 금성 탐사 화성은 각국 우주기구의 인기 있는 탐사 대상이지만 최근에는 지구의 다른 이웃이 더 주목받고 있다. 2020년 연구원들은 금성의 대기에서 포스핀의 흔적을 감지했다고 발표했다. 그것은 생명체가 배출한 가능성이 있는 가스로, 이 소식은 단박에 금성을 최고의 관심 행성으로 떠올렸다. 2021년 6월 초, 미 항공우주국(NASA)은 2030년까지 금성으로 2개의 임무를 시작할 것이라고 발표했다. 다빈치 플러스(DAVINCI+/Deep Atmosphere Venus Investigation of Noble Gas, Chemistry, and Imaging, Plus)로 불리는 이 임무 중 하나는 금성의 대기를 통해 하강하여 시간이 지남에 따라 금성 대기가 어떻게 변하는지 조사하는 것이다. 다른 임무인 베리타스(VERITAS/Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy)는 색다른 궤도에서 금성의 지형을 매핑하는 것이다. 금성은 로봇 탐사선이 방문했지만 NASA는 1989년 이후로는 금성에 대한 전용 임무를 실행한 적이 없다. 금성이 최근 수십 년 동안 방치된 이유는 화성 탐사 때문일 수도 있지만, 태양계의 두 번째 행성 역시 연구하기가 녹록찮은 곳이기 때문이기도 하다. 금성은 한때 바다와 강이 있는 온화한 세계였을 것으로 보고 있지만,약 7억 년 전 온실 효과로 인해 금성은 표면온도가 납이 녹을 만큼 뜨겁다. 4. 심상찮은 태양의 활동태양은 대략 11년 주기의 조용한 시간을 지내왔지만 이제 그 단계를 벗어나고 있다. 태양은 최근 몇 년 동안 거의 활동하지 않았지만 이제 지구를 향해 하전 입자를 분출하는 강력한 폭발이 표면에서 일어나기 시작했있다. 예컨대, 11월 초 일련의 태양 폭발이 우리 행성에 큰 지자기 폭풍을 일으켰다. 코로나 질량 방출(CME)이라 불리는 이 분출은 본질적으로 자기장을 띤 10억 톤의 태양 물질 덩어리를 폭발하듯이 뿜어내는 것으로, 뒤이어 강력한 에너지 입자의 흐름을 태양계로 방출한다. 이 물질이 지구 방향으로 향하면 지구 자기장과 상호작용하여 지구의 극 부근에서 오로라를 만들기도 하고, 위성 통신 두절이나 대규모의 정전사태를 일으키기도 한다.  5. '차세대 우주망원경' 제임스웹 발사​우주 과학의 완전한 새 시대는 2021년 크리스마스에 '차세대 우주망원경'이 남미 프랑스령 기아나에 있는 유럽의 우주공항에서 성공적으로 발사되면서 시작되었다. 제임스웹 우주망원경(JWST) 프로젝트는 NASA, 유럽 우주국 및 캐나다 우주국이 30년 이상 합작으로 진행 한 것으로, 무려 100억 달러를 쏟아부은 대형 프로젝트이다. 애초 2007년에 발사하기로 예정된 것이었지만, 14년이나 지각한 끝에 가까스로 발사하는 데 성공했다. 우주망원경은 계획하고 조립하는 데는 오랜 시간이 걸린다. JWST의 구상과 설계는 전신인 허블 우주망원경이 지구 궤도에 진입하기도 전에 시작되었다. 허블이 지구 표면에서 수백 킬로 고도에서 도는 반면, JWST는 우리 행성에서 약 150만km 떨어진 지점에서 관측한다. 망원경은 2021년 12월 25일 오전 7시 20분(미국동부시간)에 지구-태양 라그랑주 점 2(L2)라고 불리는 이 지점을 향한 여행을 시작했다. 망원경은 우주의 진화에 대한 천문학자들의 질문에 답하며, 우리가 어디서 시작되었는지, 어떻게 여기까지 오게 되었는지 탐색할 것이며, 그리고 태양계에 대한 더 깊은 이해를 제공할 것이다.​ 6. '사건지평선 망원경'이 선명한 블랙홀 제트 분출 사진을 찍었다2021년 7월, 세계 최초의 블랙홀 사진을 탄생시킨 프로젝트는 이와 함께 이러한 초질량 물체 중 하나에서 강력한 제트가 분출하는 이미지를 공개했다. 사건지평선 망원경(EHT)은 지구 크기의 망원경 1개를 만들기 위해 협력하는 8개 관측소가 참여한 글로벌 협력이다. 최종 결과는 이전보다 16배 더 선명한 해상도와 10배 더 정확한 이미지가 만들어낸 것이다. 과학자들은 EHT의 놀라운 능력을 사용하여 밤하늘에서 가장 밝은 천체 중 하나인 센타우루스 A 은하의 중심에 있는 초대질량 블랙홀에 의해 강력한 제트가 분출되는 것을 관찰했다. 은하의 블랙홀은 초대 질량으로 무려 태양 질량의 5,500만 배에 달한다.  7. 지구에서 가장 가까운 블랙홀 발견했다​지구에서 불과 1,500광년 떨어진 곳에 지구에서 가장 가까운 블랙홀을 발견했다. 이 블랙홀은 '유니콘'이라 불린다. 작은 블랙홀은 발견하기가 어렵다. 하지만 과학자들은 동반 별인 적색거성에서 이상한 행동을 발견함으로써 '유니콘'을 발견했다. 연구원들은 빛의 세기가 변하는 것을 관찰했으며, 이는 다른 물체가 별을 잡아당기고 있음을 시사하는 것이었다. 이 블랙홀은 태양 질량의 3배에 불과한 초경량이다. 외뿔소자리(Monoceros)에서 발견되어서 유니콘이라는 이름을 얻었다.​ 8. 지구의 제2의 달이 영원히 우주로 떠났다 두 번째 달처럼 지구 궤도에 진입한 물체가 올해 우리 행성에 마지막으로 근접한 후 영원히 이별했다. '미니문' 또는 임시 위성으로 분류되는 그 물체는 길 잃은 우주 암석은 아니다. 2020 SO로 알려진 이 물체는 아메리칸 서베이어(American Surveyor) 달 임무에서 발생한 1960년대 로켓 부스터의 남은 조각이다. 2021년 2월 2일, 2020 SO는 지구와 달 사이의 58%, 지구에서 약 22만km 떨어진 곳까지 도달했다. 그것은 미니문의 마지막 접근이었지만 지구로의 가장 가까운 여행은 아니었다. 그보다 몇 달 전인 2020년 12월 1일에 우리 행성까지의 최단 거리에 도달했다. 그 후로 2020 SO는 지구 궤도에서 멀어져 우주로 떠내려간 후 두번 다시 돌아오지 않았다.  9. 파커 태양탐사선이 태양의 대기 속을 돌입했다​ 올해 NASA의 태양 터치 우주선은 개기일식 동안에만 볼 수 있는 코로나 속을 돌파했으며, 태양의 '돌아오지 않는 지점'의 위치를 정확히 측정할 수 있었다. 태양 탐사선 파커 솔라 프로브는 지난 3년 동안 태양에 가까이 접근하기 위해 계속 궤도를 좁혀왔다. 이 탐사선은 과학자들이 태양풍, 즉 하전 입자의 바다를 생성하는 원인을 분석할 수 있도록 설계되었다. 태양이 뿜어내는 이 태양풍은 여러 가지 방법으로 지구에 엄청난 영향을 미칠 수 있다. 우주선은 8번 태양을 플라이바이 하는 동안 코로나로 알려진 태양의 외부 대기로 돌입했다. 4월 28일의 코로나 속 기동은 알벤(Alfvén) 임계 표면의 정확한 위치를 확인하는 데이터를 제공했다. 이곳은 태양풍이 태양에서 멀어져 다시는 돌아오지 않는 지점이다. 탐사선은 태양 표면에서 15태양 반경, 즉 1300만km까지 도달할 수 있었다. 그것은 개기일식 동안 달이 태양 디스크의 빛을 차단할 때 지구에서 볼 수 있는 태양 코로나의 연장선 중 하나로 관찰되는 슈도스트리머(pseudostreamer; 가상 띠)라는 거대한 구조를 넘어선 곳이었다. 발견에 대한 성명에서 NASA 관계자는 탐사선이 "폭풍의 눈 속으로 날아갔다"고 표현했다.  10. 화성 탐사로버 퍼서비어런스의 화성 착륙 마지막으로 올해는 NASA의 퍼서비어런스 로버가 화성에 도착한 해였다. 로버는 2021년 2월 18일 화성에 도착한 이후 화성 생명체의 흔적을 찾기 위해 열심히 노력해왔다. 엔지니어들은 임무 팀이 조사할 가치가 있는 암석을 결정할 수 있도록 퍼서비어런스에 강력한 카메라를 장착했다. 화성 탐사 로버의 가장 매력적인 발견 중 하나는 '하버 실 록(Harbor Seal Rock/바다표범바위)'으로, 수년에 걸쳐 화성의 바람에 의해 조각된 기이한 모양의 지형지물이다. 퍼서비어런스는 또한 여러 암석 샘플을 얻었으며, 미래의 어느 시점에 분석을 위해 회수 우주선을 보내 가져올 예정이다. 퍼서비어런스는 화성 생명체의 흔적을 찾기 위해 수십억 년 전 삼각주와 깊은 호수가 있었던 폭 45km의 예제로 분화구에서 탐사를 진행하고 있다.
  • 중국 누리꾼들 머스크 맹폭 “우주쓰레기 양산“ ”미국을 대신한 우주무기”

    중국 누리꾼들 머스크 맹폭 “우주쓰레기 양산“ ”미국을 대신한 우주무기”

    중국이 독자적으로 건설하고 있는 우주정거장이 스페이스X의 스타링크 위성과 충돌하는 일을 피하려고 두 차례나 회피 기동을 한 사실이 있다며 유엔에 불만을 제기하자 자국 누리꾼들이 일제히 스페이스X를 창업한 일론 머스크의 소셜미디어 계정을 맹폭하고 있다. 유엔 우주업무사무국(UNOOSA) 웹사이트에 게시된 중국 측 문서에 따르면 지난 7월 1일과 10월 21일 두 차례에 걸쳐 중국 우주정거장이 근접하는 스타링크 위성을 피하려고 움직였다. 중국 측은 당시 안전을 이유로 우주정거장이 예방적 충돌회피 제어를 수행했다고 밝혔다. 하지만 BBC는 이 문서의 존재를 독자적으로 확인하지 못했다고 털어놓았다. 또 스페이스X에 입장 표명을 요청했으나 답을 듣지 못했다고 덧붙였다. 그러나 중국 당국이 정식으로 불만을 제기했다는 사실이 알려지자 중국판 트위터인 웨이보에는 머스크와 스페이스X의 스타링크 계획을 비난하는 글들이 이어지고 있다. 한 이용자는 스타링크 위성을 우주쓰레기에 비유했으며 다른 이용자는 미국의 우주무기일 뿐이며 “머스크야말로 미국 정부와 군부가 만들어낸 새로운 무기”라고 정반대 비난을 퍼부었다. 또 다른 이용자는 스타링크의 위험이 점점 드러나고 있다면서 인류 전체가 머스크의 사업에 대한 대가를 치를 것이라고 경고했다고 로이터 통신은 전했다. 머스크도 당시 트윗을 통해 충돌 가능성을 줄이기 위해 스타링크 위성의 궤도를 조정했다고 밝혔다. 머스크가 설립한 스페이스X의 스타링크 위성 인터넷 사업은 저궤도 소형위성 1만 2000개를 쏘아 올려 지구 전역에서 이용 가능한 초고속 인터넷 서비스를 구축하게 된다. 스페이스X는 ‘셸’(Shell)로 불리는 5개의 궤도 위성망을 단계적으로 구축해 1단계 위성 인터넷 사업을 2027년 3월까지 완수한다는 구상이다. 과학자들은 우주공간에서 위성들이 충돌을 일으킬 위험성을 늘 우려해 왔으며 각국 정부로 하여금 3만개 정도로 추정되는 위성과 지구궤도를 선회하는 다른 잔해들에 대한 정보를 공유해야 한다고 촉구했다. 스페이스X는 이미 1900개의 위성을 쏘아올렸고, 앞으로 수천개의 위성을 더 올릴 계획이다. 앞서 지난달 말에도 미국 항공우주국(NASA)은 국제우주정거장(ISS)으로 접근하는 우주 잔해물로 인한 사고를 막기 위해 우주비행사의 외부 유영 임무를 연기한 일도 있다.
  • [아하! 우주] ‘29일간의 벼랑끝 여행’.. 제임스웹 망원경의 험난한 여정

    [아하! 우주] ‘29일간의 벼랑끝 여행’.. 제임스웹 망원경의 험난한 여정

    100억 달러(한화 12조)를 쏟아부은 미항공우주국(NASA)의 차세대 우주망원경이 14년 지각 끝에 마침내 발사되었지만, 기대되는 과학 임무를 시작하려면 시간이 좀 걸릴 것으로 보인다. 크리스마스인 25일 프랑스령 기아나에서 아리안 5호 로켓에 얹혀 발사된 제임스웹 우주망원경(JWST)의 임무는 인류의 오랜 숙원인 우주 기원의 비밀을 파헤치는 것이다. 이를 위해 JWST는 135억년 전 초기 우주의 모습을 들여다볼 계획이며, 또한 주변 외계행성의 생명체를 탐색할 예정이다. 이 모든 임무는 우리 인류가 언제, 어디서, 어떻게 여기까지 왔는가 하는 원초적인 문제와 직결되어 있다. 그러나 이러한 임무를 수행하기 위해 JWST팀 구성원들은 상당 기간 인내심을 유지하지 않으면 안된다. 웹이 본격적인 탐사작업에 들어가기 전에 해결하고 수행해야 할 일들이 만만찮기 때문이다. JWST는 우리 지구 행성에서 태양의 반대방향, 곧 현재 화성이 있는 방향으로 150만km(지구-달 거리의 약 4배) 떨어진 태양-지구 라그랑주 점 2(L2)로 향하고 있다. 이곳은 태양과 지구의 중력이 균형을 이루어 중력적으로 안정적인 지점으로, 웹은 별도의 동력 없이도 태양을 공전할 수 있다. 웹이 거기에 도착하는 데 29일이 걸릴 것이며, 그 과정에서 손에 땀을 쥐게 하는 수많은 고난이도의 통과의례를 거쳐야 한다. 메릴랜드주 그린벨트에 있는 NASA 고다드 우주비행센터의 웹 엔지니어인 마이크 멘젤은 "웹 망원경이 수행할 주요 전개작업은 50개 정도가 있는데, 178개의 이탈장치(release mechanism)가 50개 관련장비를 전개하게 된다"고 지난 10월에 올린 '29일간의 벼랑끝 여행(29 Days on the Edge)'에서 밝히면서 "이 전개작업은 지금까지 한 것 중 가장 복잡한 우주선 활동으로, 어느 것 하나라도 실패하면 안된다"라고 못박았다. 웹은 이미 몇 가지 주요 이정표를 세웠다. 예컨대, 이륙 후 약 30분 후 태양 전지판을 전개하고 태양 에너지를 흡수하기 시작했다. 그리고 지난밤엔 65분 동안 엔진을 분사해 진로를 수정, L2로 향하는 궤도에 올랐다. 다음은 앞으로 수행해야 할 주요 단계를 요약한 것이며, 주어진 일정은 대략적인 것이다. (자세한 내용은 NASA의 웹 전개 사이트 참조) 발사 후 하루가 지나면 웹은 고이득 안테나를 지구 쪽으로 회전시켜 지상 관제소와의 통신을 더욱 용이하게 할 것이다. 그 다음날 우주선은 L2를 향한 궤도를 수정하기 위해 또 한 차례 엔진 분사를 수행한다. 그리고 발사 3일 후 웹의 거대한 태양 가림막(적외선 망원경과 장비를 차갑게 유지하도록 설계된 5층 구조)를 고정하는 팔레트가 내려진다.  5장 시트로 이루어진 태양 가림막은 완전히 확장했을 때 테니스 장 크기로, 차곡차곡 접힌 상태로 로켓의 페이로드 페어링 내부에 탑재되었다. 이것을 펴는 과정은 엄청나게 복잡하다. 그 구조 속에는 140개의 이탈장치와 70개의 힌지 조립체, 400개의 도르래 장치, 90개의 케이블 및 8개의 전개 모터가 있으며, 이 모두가 5장의 펼침막이 계획대로 전개되도록 작동해야 한다고 NASA 관계자는 설명한다.  발사 후 5일째 가림막 보호 덮개가 벗겨지고, 걸침대는 하루 후에 뻗어나온다. 태양 가림막의 전개는 발사 후 8일 이내에 완료돼야 하며, 이 시점에서 팀원들은 초점을 광학장치로 옮기기 시작한다. 발사 10일쯤 후 웹은 0.74m 너비의 보조 반사경을 전개할 예정이다. 이 보조 반사경은 심우주 광자가 망원경의 주반사경에 부딪힌 후 두 번째로 부딪히는 반사경이다. 그런 다음 웹의 너비 6.5m 기본 미러가 빛날 때이다. 18개의 육각형 거울로 벌집처럼 구성된 주반사경은 태양 가림막처럼 접혀진 상태로 발사되었다. 발사 후 12~13일이 지나면 거울의 두 측면 '날개'가 펼쳐져 제자리에 고정되면 주반사경 전체 크기가 된다. 이 시점에서 웹은 최종적으로 완성된다. 이 거대한 우주천문대는 2주 남짓 후 목적지에 도착하며, 발사 29일 후 또 다른 엔진 분사를 실시해 L2 주변의 궤도에 진입하고, 여기서 다른 램프업 절차가 시작된다.예컨대, 발사 후 2~3개월이 지나면 팀은 주반사경 낱개 거울을 정렬하여 단일 집광 표면으로 만든다. 거울 정렬은 150나노미터(10억분의 1m)의 정확도까지 완벽해야 하기 때문에 이것은 힘들고 시간이 많이 걸리는 작업이 될 것이다. 참고로, 종이 한 장의 두께는 약 10만 나노미터이다. 메릴랜드주 그린벨트에 있는 NASA 고다드 우주비행센터의 웹 수석 과학자 조나단 가드너는 "우리 과학자 중 한 명이 거울을 풀이 자라는 속도보다 더 느리게 움직여야 하는 것으로 계산했다"고 말했다. 이 과정에서 팀은 웹의 4가지 과학 장비도 테스트하고 보정할 예정인데, 그것도 역시 힘든 과정이 될 것이다. 목표는 발사 6개월 후 정기적인 과학 임무에 돌입하는 것이다. 가드너는 "우리는 6월 말로 보고 있다"고 예상한다.   웹의 관측 시간은 NASA의 허블 우주망원경과 마찬가지로 과학자들의 상호 검토를 통해 선택된 다양한 프로젝트에 분배된다. 가드너는 "첫 해분의 웹 프로젝트들이 이미 결정되었으므로 새 천문대가 준비과정을 마치면 곧 작업에 들어갈 것"이라고 밝히면서 "그것은 힘든 마라톤이 될 것"이라고 덧붙였다.   
  • [우주를 보다] ‘8만 년만의 손님’ 배웅하며 우주로 날아오른 ‘인류의 눈’

    [우주를 보다] ‘8만 년만의 손님’ 배웅하며 우주로 날아오른 ‘인류의 눈’

    8만 년 만에 태양계를 찾아온 레너드 혜성을 배경으로 인류의 눈이 될 제임스 웹 우주망원경(JWST)을 실은 로켓이 우주로 날아오르는 모습이 카메라에 포착됐다. 미 항공우주국(NASA)이 운영하는 웹사이트 ‘오늘의 천문사진’(APOD) 27일자에 따르면, 웹 망원경은 현지시간 25일 오전 9시20분쯤 프랑스령 기아나 쿠루 인근 유럽우주국(ESA) 발사장인 기아나우주센터의 아리안 제3발사장에서 아리안5호 로켓에 실려 우주로 발사됐다. 같은 시간, 태국의 천체 사진작가 마티폰 탕마띠탐은 현지에서 가장 높은 도이 인타논 국립공원 정상에서 하늘로 솟아오르며 빛을 내뿜는 로켓의 모습을 촬영하는 데 성공했다. 로켓은 발사 20여 분 만에 대기권을 돌파했으므로, 작가가 이를 촬영할 수 있는 시기는 그리 길지 않았다.25년간 약 10조원 넘게 투입된 제임스 웹 망원경은 허블을 잇는 차세대 우주망원경이다. 망원경의 성능을 좌우하는 주경(Primary mirror)의 지름이 6.5m로 허블(2.4m)의 두 배를 훌쩍 넘는다. 주경이 너무 크다보니 이동시 접을 수 있도록 벌집 형태의 18개 조각으로 나눠졌다. 금속 중 가장 가벼운 베릴륨로 만들어진 18개 육각 거울은 적외선 반사율이 높이기 위해 모두 금으로 도금했다.현재는 종이접기를 한 듯 포개져 로켓에 실려 있는데 약 29일간을 날아 지구와 태양이 끌어당기는 힘이 같은 ‘라그랑주 L2’지점에 도달하면 몸체를 펼치는 작업을 진행한다. 발사 11일째 주경을 서서히 펼치기 시작해 거울을 세부 조정하는 과정을 거친다. 약 6개월 뒤부터 본격적인 관측에 돌입한다.한편 사진에는 로켓 아래 쪽으로 현재 태양계를 벗어나고 있는 레너드 혜성의 모습도 포착됐다. 레너드 혜성은 최근 지구와 달 사이 거리의 9배인 340만 ㎞까지 다가왔다가 점차 멀어지고 있다. 사진=마티폰 탕마띠탐/태국 천문연구원
  • [지구를 보다] 용암이 삼킨 섬의 전과 후…85일 만에 멈춘 라팔마 화산

    [지구를 보다] 용암이 삼킨 섬의 전과 후…85일 만에 멈춘 라팔마 화산

    스페인 카나리아 제도 라팔마섬의 쿰브레 비에하 화산이 85일 간의 분화를 마치고 드디어 활동을 멈췄다. 지난 26일(현지시간) AFP통신 등 외신은 스페인 재난당국의 발표를 빌어 지난 9월 19일 시작된 쿰브레 비에하 화산 분출이 지난 14일 부로 활동이 멈췄다고 보도했다.쿰브레 비에하 화산은 지난 9월 19일 오후, 역사적으로는 약 500여년 만에 폭발했다. 이 과정에서 발생한 화산재는 집과 농장 등을 모두 덮어버리면서 지금까지도 주민들에게 큰 고통을 안겨주고 있다. 특히 화산에서 흘러나오는 용암은 사방으로 뻗쳐 흐르면서 섬의 주요 작물인 바나나와 아보카도 농장이 엄청난 피해를 입었다. 그간 용암이 미친 영향은 멀리 위성으로도 확인된다. 미 항공우주국(NASA)의 지구관측위성인 랜드샛8(Landsat8)에 장착된 OLI(Operational Land Imager)로 촬영한 라팔마 섬의 모습을 보면 용암이 흐르기 전과 후는 확연한 차이가 난다. 먼저 화산 폭발 전인 지난 5월 21일 촬영된 사진을 보면 평화로운 라팔마 섬의 모습이 한 눈에 들어온다. 사진 속 작은 흰 점들과 직사각형 등은 집과 바나나를 기르는 온실 등이다. 그러나 화산 폭발 후인 지난 15일 최근 사진을 보면 같은 지역은 용암으로 까맣게 뒤덮였다. 이에 NASA 측이 열대 낙원이 달의 표면처럼 변했다고 평했을 정도.실제로 화산 폭발에 이은 화산재와 용암 등으로 12월 중순 기준 최소 1600채에 달하는 가옥과 학교, 농장 등이 파괴되고 7000명이 넘는 이재민이 발생했다. 또한 1250㏊에 달하는 땅이 용암에 삼켜지면서 지역경제를 지탱하는 바나나 농장은 직격탄을 맞았다.현재까지 피해 액수만 약 7억 유로(약 9400억 원)로 화산 활동은 끝났지만 파괴된 지역을 복구하고 화산재를 치우는데 상당 시간이 걸릴 전망이다.   현지언론은 "지난 10일 동안 지진이나 대량의 이산화황 분출이 발생하지 않아 공식적으로 화산 활동이 멈췄다"면서 "분화는 끝났지만 화산재 제거작업과 건물 복구 등 라팔마 섬의 긴급 사태는 아직 끝난 것이 아니다"라고 전했다.  
  • [우주를 보다] ‘8만 년만의 혜성’ 품은 오로라…中 우주망원경 촬영 버전 공개

    [우주를 보다] ‘8만 년만의 혜성’ 품은 오로라…中 우주망원경 촬영 버전 공개

    크리스마스 선물처럼 지구를 찾아왔던 레너드 혜성의 또 다른 모습이 공개됐다. 중국 우주자원 개발 스타트업인 오리진 스페이스는 자사의 소형 우주 망원경인 양왕 1호를 통해 레너드 혜성의 새로운 모습을 포착했다. 레너드 혜성의 정식 명칭은 ‘C/2021 AI’로, 지난 1월 3일 미국 애리조나 대학 연구원 그렉 레너드가 처음 발견했다. 첫 발견 당시에는 극도의 희미한 상태인 16등급 천체였으나 지금은 태양과 지구에 가깝게 접근하면서 4~5등급까지 밝아졌다. 레너드 혜성은 태양 궤도를 한 바퀴 도는 데 8만 년이 걸리기 때문에 우리 생애에서는 두 번 다시 볼 수 없다. 오리진 스페이스가 공개한 사진은 레너드 혜성이 지구와 가장 가까워졌던 지난 12일 촬영된 것으로, 강한 오로라 너머로 빠르게 이동하는 혜성의 모습을 담고 있다. 중국 오리진 스페이스의 소형 우주망원경은 가시광선과 자외선을 이용해 우주를 촬영해 왔다. 이번에 공개된 사진은 오로라의 푸른 빛과 오로라 빛깔의 꼬리를 길게 늘어뜨리며 이동하는 혜성의 신비로운 모습을 고스란히 담고 있다는 점에서 더욱 눈길을 사로잡는다. 미국항공우주국(NASA)의 태양탐사선 스트레오-A(STEREO-A)와 유럽우주국(ESA)의 태양탐사선 솔라 오비터(Solar Orbiter)도 레너드 혜성을 촬영했지만, 중국 최초의 상업적 소형 우주망원경이 오로라를 포함한 헤성의 모습을 포착하고 촬영한 것은 이번이 처음이다.천문학자들은 레너드 혜성이 5200억㎞ 떨어진 ‘오르트 구름’(태양계를 껍질처럼 둘러싸고 있는 가상의 천체집단)에서 날아온 것으로 보고 있다. 태양계 끝자락에 있는 명왕성과 지구의 거리가 대략 60억㎞인 것을 감안하면, 인간이 도달할 수도 없고 상상하기도 힘든 먼 거리다. 지난 12일 지구 표면에서 약 3400만㎞ 떨어진 우주 상공을 지나간 레너드 혜성은 오는 2022년 1월 4일, 9200만㎞ 거리에서 태양에 가장 가까운 근일점에 접근할 것으로 예상된다. 이 시점에서는 지구에서 관측이 불가능하므로, 레너드 혜성을 다시 보기 위해서는 수 만 년이 시간이 흘러야 한다. 한편, 혜성은 타원 혹은 포물선 궤도로 정기적으로 태양 주위를 도는 작은 천체를 말한다. 소행성이 바위(돌) 등으로 구성된 것과는 달리, 혜성은 얼음과 먼지로 이루어져 있다는 차이점이 있다. 이 때문에 혜성이 태양에 가깝게 접근하면 내부 성분이 녹으면서 녹색빛 등의 아름다운 꼬리를 남긴다.
  • [유용하의 사이언스 브런치] 코로나 뚫고 내년엔 우주로 간다

    [유용하의 사이언스 브런치] 코로나 뚫고 내년엔 우주로 간다

    세밑이 되면 가는 해를 아쉬워하고 오는 해를 향해 새로운 희망을 품기 마련이다. 코로나19가 임인년 새해에도 계속될 것이라는 우울한 예측들이 나오지만, 과학자들은 놀라운 연구 성과를 내고 있고 인류에게 희망을 줄 수 있는 연구에 끊임없이 도전하고 있다. 과학저널 사이언스와 네이처는 ‘2021년 최고의 연구성과’와 ‘2022년 주목해야 할 연구’를 발표하면서 과학자들의 노력에 박수를 보냈다. 사이언스가 꼽은 올해 과학계 최고의 연구에는 단백질 구조 해독 시간을 획기적으로 줄인 인공지능(AI) ‘로제타폴드’ 개발이 꼽혔다. 이 연구는 사이언스 독자를 대상으로 한 온라인 투표에서도 39%의 지지를 받아 1위에 올랐다. 단백질이 어떤 특성을 갖고 있는지 파악하기 위해서는 아미노산 서열뿐만 아니라 2차, 3차, 4차구조를 정확히 알아야 한다. 단백질 입체구조 파악을 위해 X선 결정학이나 극저온전자현미경이 이용되고 있다. 문제는 결과를 얻기까지 짧아야 수개월, 길게 보면 몇 년이 걸린다는 점이다. 미국 워싱턴대 단백질설계연구소 연구진은 짧게는 수 분, 길어도 수 시간 내에 단백질 구조를 해독하는 로제타폴드를 만들었다. 로제타폴드로 기존에 밝혀진 단백질 구조를 해독하도록 한 결과 90% 이상의 정확도로 파악하는 것이 확인됐다. 과학자들은 이 연구 결과가 생화학 분야의 판도를 바꿀 것으로 보고 있다. 독자들이 선정한 우수연구성과 2위는 고대 퇴적물에서 고인류의 DNA를 발견한 것이다. 3위는 크리스퍼 유전자가위를 이용한 시력 개선 같은 인체적용 연구가 선정됐다. 이 밖에 코로나19 치료제 개발, 환각제를 이용한 외상후스트레스장애(PTSD) 치료, 화성 지진 관측, 감염병 치료용 단일클론항체 개발, 한 단계 발전한 핵융합기술 등도 올해 우수연구 순위에 올랐다. 새해에 주목해야 할 연구는 어떤 것들이 있을까. 네이처는 3년째에 접어드는 코로나19 상황에 주목해야 한다고 강조했다. 2020년 초 코로나19에 감염됐다가 완치된 이들의 장기적 영향에 대한 추적조사가 본격화될 것으로 예상되고 있다. 변이 바이러스가 계속 등장하는 상황에서 이에 대응할 수 있는 변이 맞춤형 백신과 치료제들을 신속하게 생산할 수 있는 방법도 등장할 것으로 기대된다. 각국의 우주탐사 계획은 2022년 전 세계를 열광시킬 것으로 보인다. 미국 항공우주국(NASA)은 내년 2월 아르테미스 계획의 첫 무인 탐사선 ‘아르테미스 1호’를 쏘아 올린다. 우주인을 태운 유인 탐사선 아르테미스 2호는 2023년에 발사한다. 아르테미스 계획은 2025년까지 달에 인간을 보내기 위한 것으로 미국, 유럽, 일본은 물론 한국까지 참여하고 있는 국제 프로젝트다. 한국도 내년 8월 달 궤도선을 발사한다. 한국 최초의 달 궤도선에는 달의 물과 얼음을 탐지하기 위해 NASA가 개발한 특수카메라를 비롯해 다양한 과학 관측 탑재체가 실린다. 중국도 내년에 톈허 우주정거장을 완성할 계획이며 유럽연합(EU)과 러시아는 2020년에 발사 연기됐던 화성탐사선 ‘엑소마스’ 프로젝트를 재가동한다. 또 거대강입자가속기(LHC) 재가동도 초미의 관심사다. LHC는 스위스와 프랑스 국경에 설치된 27㎞의 원형터널로 이뤄져 있는데 양성자 2개를 각각 다른 방향으로 빛의 속도에 가깝게 가속시킨 뒤 충돌시켜 나오는 입자를 관측하는 장치다. LHC로 ‘신의 입자’로 불렸던 힉스입자를 찾아낸 과학자들은 2013년 노벨물리학상을 수상하기도 했다. 2018년 12월까지 2차 가동을 마친 LHC는 검출기 구성 장치추가를 포함한 개선 작업을 시작했다. 올해 3차 가동을 시작할 계획이었지만 코로나19로 작업이 늦어지면서 내년 6월 가동될 예정이다. 3차 가동이 시작되면 새로운 입자와 암흑물질을 발견할 수 있을지 주목된다. 기후변화, 생물다양성 논의를 위한 제27차 유엔기후변화협약 당사국총회(COP27), 제15차 유엔생물다양성협약 당사국총회(COP15) 2부회의도 내년에 주목해야 할 부분이라고 네이처는 밝혔다.
  • “제임스, 새 생명체를 찾아줘!” 역대 최강 ‘인류의 눈’ 우주로

    “제임스, 새 생명체를 찾아줘!” 역대 최강 ‘인류의 눈’ 우주로

    차세대 ‘인류의 눈’이 될 제임스 웹 우주망원경(JWST)이 우주의 기원과 외계생명체에 대한 인류의 궁금증을 풀기 위해 우주로 발사됐다. 웹 망원경은 25일(현지시간) 오전 9시 20분쯤 프랑스령 기아나 쿠루 인근 유럽우주국(ESA) 발사장인 기아나우주센터의 아리안 제3발사장에서 아리안5호 로켓에 실려 우주로 날아올랐다. 발사 27분 뒤 웹 망원경은 대기권 밖에서 로켓과 성공적으로 분리됐고, 태양광 패널을 펼치며 망원경의 형태를 갖추기 시작했다. 이번 프로젝트를 추진한 미 항공우주국(NASA)의 빌 넬슨 국장은 “웹 망원경은 우리를 우주가 시작하는 바로 그 시점으로 데려갈 타임머신”이라며 발사 성공을 축하했다. 종이접기처럼 접힌 채 로켓에 실렸던 웹 망원경은 앞으로 보름간 50여 차례에 걸쳐 몸체를 펼치는 작업을 진행한다. 배터리 충전을 위한 태양광 패널, 지구 교신을 위한 고성능 안테나를 이미 펼쳤고 발사 나흘째엔 엿새에 걸쳐 5겹 차광막을 펼친다. 연처럼 생긴 테니스코트 크기(21×14m)의 차광막은 태양 복사열을 차단해 망원경이 -235℃의 초저온 상태로 유지되도록 한다.웹 망원경의 핵심은 금을 입힌 육각형 베릴륨 거울 18개로 이뤄진 주경이다. 전체 지름 6.5m의 주경을 펴 망원경 형태를 완성하고 나면 이후 2주간 더 비행해 지구와 태양이 중력 균형을 이루는 150만㎞ 밖 제2라그랑주점(L2) 궤도까지 비행한다. 궤도를 돌면서 주경을 구성하는 18개의 거울이 하나처럼 움직이도록 미세조정하고 근적외선카메라 등을 점검한 뒤 약 6개월 뒤부터 본격적인 관측에 돌입한다. 웹 망원경은 1990년부터 태양계 밖 은하 관측 임무를 수행 중인 허블 망원경(2.4m)보다 지름이 3배 가까이 크다. 또 근적외선과 중적외선을 포착할 수 있어 가시광선 관측에 집중한 허블 망원경보다 성능이 100배 더 뛰어난 것으로 알려졌다. 이론적으로 지구에서 약 38만㎞ 떨어진 달에서 날아다니는 호박벌의 열을 감지할 정도다. 이 같은 성능으로 웹 망원경은 빅뱅(우주 대폭발) 이후 약 3억년밖에 흐르지 않은 135억년 전 초기 우주를 관측할 수 있다. 외계행성의 대기 성분을 분석해 생명체가 존재할 수 있는 행성이 있는지도 파악할 것으로 기대를 모은다.NASA, ESA, 캐나다우주국(CSA)이 30여년에 걸쳐 100억 달러(약 11조 8500억원)를 투입한 웹 망원경 프로젝트는 한때 ‘돈 먹는 하마’로 비판받으며 폐기론이 나오기도 했다. 웹 망원경은 최대 10년간 임무를 수행하며 우주과학 발전에 크게 기여할 것으로 전망된다.
  • [이광식의 천문학+] 135억년 전 태초의 우주 엿본다…제임스웹 우주망원경 발사 성공

    [이광식의 천문학+] 135억년 전 태초의 우주 엿본다…제임스웹 우주망원경 발사 성공

    ​135억년 전 초기 우주의 비밀 엿보는 '타임머신' 빅뱅 직후인 130억 년 전 태초의 우주는 어떤 모습이었을까? 인류의 끊임없는 호기심을 풀어줄 최강의 우주망원경 제임스웹이 크리스마스날 마침내 우주를 향해 날아올랐다. 최초의 발사예정이었던 2007년에서 무려 14년이나 늦은 지각 발사였다. 미 항공우주국(NASA)은 25일 오후 9시20분(한국시간) 프랑스령 기아나 쿠로우 우주센터에서 제임스웹 우주망원경(JWST)을 실은 아리안5 로켓이 성공적으로 발사됐다고 밝혔다. JWST는 NASA와 유럽우주국(ESA), 캐나다우주국(CSA)이 1996년부터 기획, 2006년부터 제작에 들어갔다. 초기 예산의 5배를 훌적 뛰어넘는 100억 달러(한화 12조원)를 투입한 끝에 마침내 완성됐다.이 거대한 망원경은 초기 우주에 나타난 최초의 별과 은하로부터 방출되는 빛을 측정해 우주 생성의 비밀을 엿볼 예정이다. 먼 우주의 먼지구름에 가려진 외계행성의 대기를 조사해 우주 생명체의 존재를 탐사하는 임무도 띠고 있다. 모든 것이 계획대로 진행된다면 앞으로 5년에서 10년에 걸쳐 다양하고 중요한 과학 작업을 수행할 것이다. NASA 국장 빌 넬슨은 성명에서 "이것은 매우 독특한 임무"라고 강조하면서 "이 미션이 성공한다면, 비록 압도적이지는 않다 하더라도 엄청난 우주의 비밀을 열어젖혀, 우리가 누구인지, 어떻게 진화해 왔는지, 그리고 어떻게 여기까지 왔는지에 대해 엄청난 대답을 해줄 것"이라고 기대를 나타냈다. 메릴랜드주 그린벨트에 있는 NASA 고다드 우주비행센터의 웹 프로젝트 차석 과학자 조나단 가드너는 "웹은 NASA가 지금까지 수행한 것 중 가장 복잡한 것"이라고 밝히면서 "이것은 의심할 바 없이 미국이 지금까지 수행한 것 중 최대의 순수 과학 프로젝트"라고 덧붙였다.이날 성공적으로 발사대를 떠난 JWST는 발사 27분이 지난 뒤 고도 1380㎞에서 아리안5 로켓으로부터 성공적으로 분리됐다. 마침내 통제센터 관계자들은 긴장감을 풀고 박수를 치며 발사 성공을 서로 축하했다. 웹은 30분 후 태양전지판을 펼치고 전기를 공급하는 데 성공했다. 앞으로 JWST는 약 29일간 날아가 지구로부터 지구-달 거리의 4배인 150만㎞ 떨어진 라그랑주2(L2) 지점에 안착할 예정이다. 이곳은 태양과 지구의 중력이 균형을 이뤄 별도의 동력 없이도 태양을 공전하면서 임무를 수행할 수 있는 지점이다. 또한 태양과 지구로부터 나오는 빛의 방해를 최소화할 수 있으며, 지구와 망원경의 거리를 항상 일정하게 유지할 수 있는 이점을 갖고 있는 지점이다. 제 위치에 도착한 뒤 약 5개월의 안정화 작업을 거친 이후 제임스웹은 사상 최대의 6.5m 주경을 통해 빅뱅 이후 우주의 생성과 비밀을 찾아 나선다. NASA는 “앞으로 10년 동안 전 세계 천문학자는 물론 우주과학자 등 우주의 비밀을 연구하고 생성과 진화를 탐구하는 이들에게 제임스웹은 ‘우주의 눈’이 돼줄 것”이라며 “적외선 우주망원경인 제임스웹으로 우리는 새로운 우주 탐험의 역사를 쓰게 됐다”고 밝혔다.항해 과정이 쉬운 것은 아니다. 갖가지 어려운 작업과정을 거쳐야 하는데, 우선 포개져 있는 지름 6.5m, 넓이 25㎡의 거대 반사경을 제대로 펴야 한다. JWST의 반사경이 너무 커서 발사 때 로켓 적재함에 넣을 수 있도록 반으로 접혀진 상태이다. 또 태양의 열과 빛을 막기 위해 설치한 테니스 코트 크기의 태양 가림막 펼치기, 반사경 미세 조절 등 각종 최첨단 장비의 정상 가동 시험 등이 기다리고 있다. 발사 후 13일째가 되면 차양막, 지지대, 그리고 망원경이 모두 펼쳐진다. 허블 우주망원경보다 최대 100배의 해상도를 자랑하는 JWST는 라그랑주2 지점에 도착한 후 태양을 바라볼 때 지구와 동일 선상에서 태양을 공전한다. 태양 가림막이 한 면이 항상 태양, 지구 및 달을 향해 펼쳐져 열ㆍ빛이 망원경의 관측을 방해하는 것을 막는다. 통신은 NASA의 제트추진연구소(JPL)에서 관리하는 거대 안테나인 심우주네트워크(DSN)를 통해 이뤄진다. 5차례나 고장나 막대한 예산이 낭비된 허블 망원경의 전철을 밟지 않기 위해 NASA 개발자들은 제작 과정에서 수십 회 반복 테스트를 실시했으며, 또한 지구에서 통신을 통해 자체적으로 오류를 수정하는 프로그램도 탑재했다. 문제는 고도 600㎞ 궤도에서 활동한 허블 망원경과 달리 150만㎞나 떨어져 있는 웹은 너무 멀어 고장날 경우 사람을 보내 수리할 길이 없다는 점이다. NASA는 스페이스X가 개발 중인 스페이스십이나 자체 개발 중인 SLS 등 초대형 우주발사체가 완성될 경우 웹 망원경의 수리 임무에 동원할 수 있을 것으로 예상하고 있다. 한 세대가 걸린 망원경 만들기웹이 처음으로 논의되기 시작한 것은 30년 전의 일이다. 1989년 9월에 볼티모어의 우주망원경 과학연구소에서 한 무리의 천문학자들이 만나서 허블 우주망원경의 후계를 논의하기 시작했을 때 처음으로 운곽을 드러냈다. 이때는 허블을 발사하기도 전이었지만, 그 후계 문제가 수면 위로 떠오른 것이다. 대형 우주망원경은 계획하고 구축하는 데 오랜 시간이 걸리기 때문에 천문학 커뮤니티에서는 10~20년 앞을 미리 구상하는 경향이 있다. 그래야만 '차세대 우주망원경'(NGST)과의 관측 간격을 최대한 단축할 수 있기 때문이다. 1990년대 중반까지 NGST가 초기 우주를 연구해야 한다는 합의가 이루어졌다. 허블이 빅뱅(138억 년 전) 이후 불과 10억 년이 지난 시점의 우주 모습을 제공했지만, 천문학계는 훨씬 더 초기의 우주를 조사하기를 원했다. 이상적으로는 우주가 태어난 직후 몇억 년 이내에 형성된 최초의 별과 은하의 시대까지 거슬러올라가는 것이다. 거대한 우주망원경은 우주의 초창기까지 거슬러올라갈 수 있는 타임머신이라고 할 수 있다. 허블, 스피처 우주망원경의 뒤를 이어 인류의 우주 관측의 새로운 역사를 쓸 것으로 기대되는 웹 망원경은 허블 망원경이 사용했던 가시광선이 아닌 적외선을 통해 태양과 같은 별을 관측하므로 우주공간에서 기존 망원경보다 더 먼 공간을 관측할 수 있다. 최대 1000광년 떨어진 행성의 산소분자를 확인할 수 있는 것으로 알려졌다. 1광년은 빛이 1년 동안 달리는 거리로 약 10조억㎞다.NASA는 우주의 암흑기(Dark Age)가 끝난 시점, 즉 138억년 전 우주 대폭발(빅뱅) 직후 2억년 쯤 지난 135억년대 초기 우주의 별들이 보내온 적외선 파장을 관측할 수 있다고 밝혔다. 이는 사실 웹 망원경이 인류가 우주의 끝을 관측하는 첫 번째 망원경이 될 것이라는 의미이다. 뿐만 아니라 웹은 생명체가 존재할 가능성이 높은 외계행성의 우주 생명체의 탐색과 외계 태양계의 초기 행성계 관측에 집중하여 할 수 있어 태양계 생성의 비밀도 밝히는 데도 도움을 줄 것으로 기대되고 있다. JWST는 허블과는 전혀 다른 형태를 취한 우주망원경이다. 얇은 금을 코팅한 베릴륨으로 만든 육각형 거울 18개를 벌집 꼴로 이어붙여 만든 주경은 지름이 6.5m로, 2.4m인 허블보다 2배 이상 크다. 따라서 집광력은 7배가 넘고 시야는 15배 이상 넓다. 제임스웹이라는 이름은 1960년대 캐네디 대통령 시절 NASA 제2대 국장을 역임하며 최초 달 착륙선 아폴로 프로젝트를 이끌었던 제임스 웹 NASA 국장의 이름을 땄다. 웹 망원경 설계 수명은 5년이지만, '위대한 업적'을 남긴 허블 망원경을 계승하여 앞으로 수십 년간 작동하면서 인류를 보다 먼 태초의 우주로 데려다줄 것으로 기대를 모으고 있다.
  • 우주를 더 깊게 들여다볼 웹 망원경 로켓과 분리 “Go Web!”

    우주를 더 깊게 들여다볼 웹 망원경 로켓과 분리 “Go Web!”

    성탄절 밤에 역대 가장 크고 강력한 우주망원경인 ‘제임스 웹 우주망원경’(JWST)이 로켓에 실려 우주로 떠났다. 웹 망원경을 탑재한 아리안 5호 로켓은 이날 밤 9시 20분(한국시간) 예정된 시간에 정확히 발사됐다. 미국 동부 시간으로도 성탄절 아침 7시 20분이어서 훌륭한 성탄 선물이 됐다. 프랑스령 기아나 쿠루 인근의 기아나 우주센터 내 아리안 제3발사장(ELA-3)에 세워진 웹 망원경은 전원을 켜고 모든 시스템에 동력이 제대로 전달되고 작동하는지 최종 점검받았다. 현존하는 가장 안정적인 중형 로켓으로 꼽히는 아리안 5호 로켓은 발사 몇 시간 전에 액화 수소연료와 산소 산화제가 주입되며, 웹 망원경은 발사 30분 전 외부공급 전력을 끊고 자체 배터리로 동력을 전환해 발사 단계에 들어갔다. 웹 망원경은 로켓 발사 206초 뒤 120㎞ 상공에 도달해 덮고 있던 페어링이 떨어져 나가고 약 3분 30초 뒤부터 원격 신호를 전송했다. 발사 27분 20초 뒤 로켓에서 분리돼 태양광 패널을 펼치자 통제 센터에서 환호와 박수가 터져나왔다. “고 웹(Go Web)”이란 명령이 들렸다. 발사 2시간 뒤에는 안테나를 전개하고 자체 로켓을 이용해 지구에서 150만㎞ 떨어진 목표 궤도인 지구와 태양의 ‘제2라그랑주점’(L2)으로 가기 위한 첫 궤도 조정을 한다.웹 망원경은 L2 궤도로 가는 동안 테니스 코트 크기의 태양 빛 차광막을 펼치고, 6.5m 주경을 전개하는 등 역대 가장 복잡한 우주 배치를 거치게 된다. 근적외선과 중적외선으로 우주 곳곳을 들여다볼 웹 망원경은 약 6개월 뒤 첫 이미지를 내고 본격적인 탐사에 나서게 된다. 우주를 가장 멀리, 가장 깊게 들여다볼 수 있는 웹 망원경은 5∼10년간 1세대 은하를 관측하고 외계행성의 대기를 분석하며 망원경 관측의 한계 때문에 수수께끼로 남겨뒀던 숙제를 해결해 줄 것으로 기대되고 있다. 태양 궤도에 진입해 지구와 나란히 공전하며 빅뱅 직후 우주 탄생 초기에 발생한 빛과 먼지를 확인하고, 외계행성 대기의 성분 등을 분석하는 일을 돕는다. 망원경 명칭은 1950~1960년대 초기 아폴로 계획을 이끈 NASA 제2대 국장 제임스 에드윈 웹의 이름을 땄다. 웹 망원경은 지구 상공 559㎞ 궤도를 돌고 있는 허블 우주망원경을 대체하게 된다. 허블은 우주를 향한 인류의 시각이 허블 이전과 이후로 나뉠 정도란 말을 들을 정도로 엄청난 활약을 펼쳤다. 블랙홀을 발견하고 우주의 나이가 137억년임을 밝혀냈다. 당초 예상됐던 수명 15년의 곱절 이상을 버틴 허블 망원경은 2025년쯤 수명을 다한다.https://www.bbc.com/news/av/science-environment-59760229 미국 항공우주국(NASA)과 유럽우주국(ESA), 아리안스페이스는 25년 동안 12조원을 들여 웹 망원경을 개발했다. 인류의 최첨단 과학기술을 집약한 ‘인류 최고의 우주망원경’인데 사실 첫 구상에 들어간 것은 허블 망원경이 발사됐던 1990년이었으니 인류의 집요한 도전이 마침내 위대한 도박으로 연결되는 셈이다. 전반적 관측 능력이 허블의 100배다. 사람의 눈처럼 가시광선을 관측한 광학 우주망원경인 허블과 달리 제임스 웹은 적외선 우주망원경이다. 직경 6.5m로, 얇은 금을 도금한 은백색 금속인 베릴륨 거울 18개로 구성됐다. 마침 SBS는 웹 망원경 발사 모습을 지켜보기 위해 많은 시간을 기다려야 하는 이들의 갈증을 풀 기회를 제공했다. 아침 8시에 특별기획 ‘K로켓 우주로 가다’를 방영했는데 지난 10월 21일 국산 로켓 누리호가 성공적으로 발사되기까지 우리 모두가 기울인 정성과 노력 등을 소개하며 우주 개척이 갖는 의미를 돌아봤다.
  • [아하! 우주] 허블보다 100배 강력…성탄절 우주가는 제임스웹 망원경의 비밀

    [아하! 우주] 허블보다 100배 강력…성탄절 우주가는 제임스웹 망원경의 비밀

    허블 우주망원경보다 100배나 강력한 제임스웹 우주망원경(JWST)이 당초 예정된 2007년 보다 무려 14년이나 지각한 끝에 마침내 발사된다. 미 항공우주국(NASA)의 발표에 따르면, JWST는 현지시간 25일 오전 9시 20분(한국시간 오후 9시 20분) 프랑스령 기아나 유럽우주센터에서 아리안5호 로켓에 실려 발사된다. NASA가 애초 공지한 발사 시점은 24일이었지만, 발사장 주변 고공에서 강한 바람이 불 것이라는 기상 예보가 나오면서 발사 시점이 다시 하루 늦춰진 것이다. 1996년부터 제작에만 100억 달러(약 11조 8000억원)가 투입된 JWST의 최대 목표는 약 138억 년 전 빅뱅 직후 초기 우주의 모습을 관측하고 우주의 기원을 더욱 깊게 들여다보는 것이다. 이는 우주의 나이와 크기를 결정하는 허블상수를 구하는 등 30년 간 우주탐사에서 위대한 족적을 남긴 허블 망원경이 이루지 못한 꿈이다. JWST의 다음 목표는 생명체가 존재하는 외계행성을 찾아내는 작업이다. 이에 대해 NASA는 “외계행성의 대기에 관해 더 많은 정보를 얻게 해줄 것”이라며 “우주에서 생명체 구성 요소를 발견하게 될 가능성도 있다”고 밝혔다. 이 같은 두 분야의 미션이 제대로 수행된다면 JWST는 인류의 우주탐사 역사에 혁명을 가져다줄 것으로 과학자들은 기대하고 있다. 그러나 발사와 정착에 이르기까지 JWST의 앞길에는 만만찮은 난제들이 첩첩이 가로놓여 있다. 이 모든 난관들을 극복하고 JWST가 지구에서 150만㎞ 떨어진 '우주 주차장'에 정착해 임무 수행에 들어간다면 과학계에는 엄청난 변화가 몰아칠 것으로 보인다.JWST는 허블과는 전혀 다른 형태를 취한 우주망원경이다. 육각형 거울 18개를 벌집의 형태로 이어붙여 만든 주경은 지름이 6.5m로, 2.4m인 허블보다 2배 이상 크다. 따라서 집광력은 7배가 넘는다. 18개의 육각 거울은 얇은 금을 코팅한 베릴륨으로 만들었다. 금의 빛 반사율이 98%로 가장 높기 때문이다. 게다가 태양열과 빛을 막아주는 가로 21m, 세로 14m의 방패막으로부터 보호를 받는다. JWST가 머무는 곳도 허블과는 판이하다. 고도 500㎞ 안팎의 지구 저궤도를 돌며 우주를 관측한 허블과는 달리 지구-달 거리의 약 4배쯤 되는 150만㎞ 떨어진 ‘라그랑주 L2’ 지점이 주차지역이다. 이 L2 지점은 태양이 지구를 끌어당기는 힘과 지구의 원심력이 같은 곳으로, 별도 추진 장치 없이 JWST가 지속적으로 지구 궤도를 돌 수 있다.JWST는 적외선 관측으로 특화된 망원경인데, 긴 파장의 적외선으로 관측할 경우 우주의 먼지 뒤에 숨은 대상까지 뚜렷하게 볼 수 있다. 또한 빛은 먼 거리에서 오는 것일수록 적외선에 가까워지기 때문에 장거리 관측 능력도 좋아진다. 이런 특징을 종합하면 JWST의 관측 능력이 허블 망원경보다 100배 클 것으로 평가된다. 따라서 과학자들은 JWST가 ‘빅뱅’ 직후, 즉 135억 년 전쯤 출발한 빛을 잡아낼 수 있을 것으로 기대한다. 우주가 탄생 직후 어떤 모습이었는지 볼 수 있다면 지금까지 해결되지 않은 세밀한 우주 진화 과정을 파악할 수 있을 것으로 기대한다. 그러나 이 모든 기대는 JWST가 발사에서 정착에 이르는 수많은 난관들을 모두 통과해야 이루어질 수 있는 것이다. JWST가 라그랑주 L2에서 고장난다면 허블 망원경과는 달리 수리가 불가능하다. 150만㎞는 고장난 망원경을 수리하려 가기에 너무 먼 거리다. 그러면 우리 돈으로 12조원이 허공으로 날아가버린다. 이것이 바로 JWST가 라그랑주 L2 지점에 안착해 정상 작동을 확인하기까지 약 30일 동안 긴장을 놓기 어려운 이유다. 인류는 JWST의 성공을 위해 손에 땀을 쥐며 지켜보고 있는 중이다.  
  • [우주를 보다] 목성-토성-금성 일렬로…‘8만 년만의 손님’ 레너드 혜성 맞이

    [우주를 보다] 목성-토성-금성 일렬로…‘8만 년만의 손님’ 레너드 혜성 맞이

    8만 년 만에 태양계를 찾아온 레너드 혜성이 목성, 토성, 금성과 함께 기하학적인 대형을 그려냈다. 미 항공우주국(NASA)이 운영하는 웹사이트 ‘오늘의 천문사진’(APOD) 23일자에 따르면, 터키 천체 사진작가 툰츠 테젤은 동짓날이었던 22일 밤 키라즐리 마을에서 이 같은 사진을 촬영했다.사진에는 오른쪽 남서쪽 지평선 가까운 곳에 밝은 금성이, 왼쪽 위 구름 사이에는 토성이 자리를 잡고 있다. 금성과 토성을 따라 선을 긋고 왼쪽 위로 더 이어나가면 태양계 거대 가스 행성인 목성이 보인다. 그리고 지평선과 가까운 곳에는 레너드 혜성이 있다. 이 희미한 혜성은 사진 속에서 금성, 토성과 함께 거의 정삼각형을 이루는 모습이다. NASA에 따르면, 레너드 혜성은 최근 급격히 밝아져 간신히 맨눈으로 볼 수 있을 정도가 됐지만, 쌍안경이나 망원경으로 보는 것이 더 좋은 방법이다. 지난 1월 천문학자 그레그 레너드에 의해 발견돼 그 이름을 딴 레너드 혜성의 밝기는 4~6등급 정도로 올해 태양계를 방문한 혜성 가운데 가장 밝다. 레너드 혜성은 지구와 달 사이 거리의 9배 정도인 3500만㎞까지 다가왔다가 점차 멀어지고 있다. 연말까지는 밤 하늘에서 혜성을 볼 수 있다. 사진=툰츠 테젤/TWAN
  • [핵잼 사이언스] 지구, 50년 전보다 1초 빨리 자전…원자시계 1초 빼야

    [핵잼 사이언스] 지구, 50년 전보다 1초 빨리 자전…원자시계 1초 빼야

    지구는 50년 전보다 빠르게 자전하고 있어 전 세계가 시간을 바꿔야 할지 모른다는 주장이 다시 제기됐다. 영국 일간 데일리메일 등에 따르면, 영국 국립물리학연구소(NPL) 선임연구원 피터 휘벌리 박사는 지구의 자전 속도가 더 빨라지면 ‘음(-)의 윤초’(negative leap second)를 적용해야 할 수 있다고 지적했다.  음의 윤초는 세계협정시를 만드는 원자시계에서 1초를 삭제하는 것을 말한다. 다만 지금까지 원자시계에 음의 윤초를 적용한 사례가 없고, 작업을 수행하도록 설계된 시스템은 시험된 적이 없다. 음의 윤초의 적용하자는 주장은 지구의 자전 속도가 빨라지기 시작한 지난해 처음 나왔지만, 이후 그 속도가 둔화하면서 올해의 하루 평균 시간은 지난해보다 0.39㎳(밀리초, 1㎳는 1000분의 1초)가 줄어들었다. 미국표준기술연구소의 유다 러빈 박사도 “시간이 흐를수록 원자시계의 시간과 천문학적으로 측정한 시간 사이에 점진적인 차이가 있다”면서 “차이가 너무 벌어지지 않도록 1972년부터 원자시계에 주기적으로 윤초를 더하고 있다”고 설명했다.지구의 자전 속도는 국제 지구 자전회전 관리국(IERS)이 인공위성에 레이저광을 조사함으로써 위성 움직임을 측정해 지구가 얼마나 빨리 자진하는지를 추적하는 역할을 한다. 이것이 원자시계와 일치하지 않으면 과학자들이 윤초를 더해 조정하는 것이다. 러빈 박사는 “지구의 자전 속도는 꽤 복잡하다. 이는 지구와 대기 사이 각운동량의 교환과 해양과 달의 영향과 관계가 있다”면서 “그 속도가 앞으로 어떻게 될지는 예측할 수 없다”고 설명했다. 윤초의 적용은 2016년 이후 없었지만, 지구는 지난해부터 다시 빨라졌다. 비록 그 속도가 조금 느려지긴 했지만 말이다. 러빈 박사는 “음의 윤초의 필요성은 과거 전혀 예상하지 못했다. 지구는 계속해서 느려질 것으로 예상됐기 때문”이라고 말했다. 실제로 지구는 오늘날 1년에 365번 자전하는 것과 달리, 몇백만 년 전에는 1년에 420번 자전했다. 휘벌리 박사는 “지금은 지구의 자전 속도가 더 빨라질 경우 음의 윤초를 적용해야 할지도 모른다는 우려가 있다”고 말했다. 문제는 음의 윤초를 적용하면 우리 사회에 어떤 영향을 미칠지 확실히 알지 못한다는 데 있다. 인터넷은 원자시계를 통해 측정한 안정된 시간 흐름에 의존하며, 웹사이트를 사용하는 회사마다 윤초 여부에 대해 서로 다른 방식으로 적용한다. 예를 들어 구글의 경우 1년 내내 여분의 시간을 1초마다 분산해 적용하는 시스템을 사용한다. 러빈 박사는 “인터넷의 주요 특성은 시간이 연속된다는 것”이라면서 “일정한 시간이 없으면 정보의 지속적인 공급이 붕괴하고 말 것”이라고 지적했다. 사진=NASA
  • [안녕? 자연] 아름다운 터키 ‘핑크 호수’의 비극…기후변화로 다 말랐다

    [안녕? 자연] 아름다운 터키 ‘핑크 호수’의 비극…기후변화로 다 말랐다

    생태계의 보고이자 핑크빛 수면으로 유명한 터키의 관광명소 ‘투즈 호수’가 사라져가는 모습이 위성으로도 확인됐다. 최근 미 항공우주국(NASA) 지구관측소는 지구관측위성인 랜드샛8(Landsat8)에 장착된 OLI(Operational Land Imager)로 촬영한투즈 호수의 과거와 현재 모습을 공개했다. 터키 중부 아나톨리아 지방에 위치한 투즈 호수는 터키에서 두 번째로 큰 호수이자, 서울시 면적의 약 2.5배에 달하는 현지 최대의 소금호수다. 홍학의 서식지이자 핑크빛 수면으로 잘 알려져 있어 우리나라를 비롯 전세계 많은 관광객들이 찾는 곳이기도 하다.그러나 이렇게 크고 아름다운 호수는 수량이 점점 줄어들며 이제는 그 바닥을 드러내고 있다. 올해에만 약 1600㎢가 넘는 지역이 증발했으며 지난 7월에는 홍학 수천 마리가 집단폐사했을 정도. 이는 위성 사진으로도 확인되는데 지난 1988년 호수 전체가 물로 가득찬 것과 달리 2000년대 들어서는 물 대신 소금으로 가득차 있는 것이 보인다. 터키 전문가들에 따르면 2000년 이전 투즈 호수는 최악의 가뭄이 들었던 1992년과 1994년을 제외하고는 호수의 최소 20%는 물로 차 있었다. 그러나 2000년대 이후 뚜렷한 변화가 나타났다. 가뭄이 더 빈번해지고 심해지면서 호수의 물이 급속히 말라버린 것. 특히 2006년과 2016년은 호수가 완전히 말라버리는 사건까지 벌어졌다. 투즈 호수에 이같은 변화가 일어난 것은 기후변화 탓이다. 터키 에게대학 아이딘-칸데미르 연구원은 "터키를 포함한 지중해 지역은 산업화 이후 더욱 따뜻해진 기후변화의 핫스팟"이라면서 "과거 투즈 호수는 최악의 가뭄에도 일정 정도 물을 품고 있었지만 지금은 그렇지 않다"고 설명했다. 이어 "2019년 이후로는 호수가 완전히 황폐화됐고 이 과정에서 지난 7월 아기 홍학이 집단 폐사했다"고 덧붙였다.   
  • [핵잼 사이언스] 우주 관측도 ‘트리플 카메라’ 시대…NASA, 위성 발사

    [핵잼 사이언스] 우주 관측도 ‘트리플 카메라’ 시대…NASA, 위성 발사

    스마트폰에는 과거 전·후면에 카메라가 하나씩 존재했다. 그러나 스마트폰 카메라의 성능이 비약적으로 발전하고 소비자의 요구도 커지면서 이제 카메라 숫자는 두세 개는 물론 네 개까지 증가했다. 스마트폰 카메라는 DSLR 카메라처럼 렌즈를 교환할 수 없고 얇게 만들어야 해서 초광각, 일반각(광각), 고배율 광학 줌까지 별도의 기능을 하는 카메라를 여러 개 탑재한다. 그런데 스마트폰 카메라나 DSLR 카메라와 비교도 되지 않을 만큼 고가인 고성능 천체망원경도 목적에 따라 여러 개를 동시에 사용할 수 있다. 유럽남방천문대(ESO)의 거대 망원경인 VLT나 미 애리조나주에 있는 거대 쌍안 망원경인 LBT가 바로 그런 사례다. 물론 초광각이나 고배율 줌이 아니라 간섭계 같은 특수 관측이 목적이다. 이런 다중 카메라는 우주망원경도 예외가 아니다. 최근 미 항공우주국(NASA)은 세 개의 망원경을 묶어 놓은 X선 관측위성인 IXPE(Imaging X-ray Polarimetry Explorer)를 발사했다. 허블 우주망원경 같은 일반적인 우주망원경이 한 개의 큰 거울로 빛을 모으는 반면 IXPE는 세 개의 작은 거울로 X선을 모은다. 더 독특한 부분은 카메라의 이미지 센서에 해당되는 검출기(detector)가 멀리 떨어져 있다는 사실이다. 발사할 때는 접혀 있다가 우주 공간에서 길게 늘어나는 페이로드 붐을 이용해 거울과 검출기 유닛 사이를 길게 늘린다 이런 이상한 구조를 지닌 이유는 지금까지 한 번도 관측한 적이 없는 우주 X선의 편광 현상을 관측하기 위해서다. 편광은 전자기파가 진행할 때 파를 구성하는 자기장이나 전기장이 특정한 방향으로만 진행하는 것으로 편광 필터를 이용해 쉽게 관측할 수 있다. 하지만 X선은 대기 중에서 흡수되기 때문에 지상 망원경으로는 관측이 불가능하다. NASA가 X선 편광 망원경인 IXPE를 발사한 이유다. 작동 원리는 간단하다. IXPE의 트리플 미러(세 개의 거울)가 수집한 X선은 이탈리아 우주국이 개발한 세 개의 검출기에 들어가 내부에 충전된 가스 입자와 반응을 일으킨다. 이때 나오는 에너지를 검출하면 다른 방식으로는 관측이 어려운 우주 X선 편광 이미지를 세 방향에서 얻을 수 있다. IXPE의 관측 목표는 매우 강력한 X선 에너지를 방출하는 천체로 블랙홀, 중성자별, 펄서, 초신성 잔해, 마그네타, 퀘이사, 활동성 은하핵 등이다.  과학자들은 이들 천체의 자기장을 포함해 과거에는 알 수 없었던 정보를 대거 획득할 수 있을 것으로 기대하고 있다. 찬드라 X선 위성 같은 우주 X선 망원경은 블랙홀 같은 극단적인 천체에 대한 이해도를 크게 높였다. IXPE는 사상 최초로 우주 X선 편광을 관측해 우주에 대한 이해도를 한 단계 더 높여줄 것으로 기대된다.
  • [아하! 우주] 화성에서 유기 화학물질 발견…2031년 지구 도착한다

    [아하! 우주] 화성에서 유기 화학물질 발견…2031년 지구 도착한다

    미국항공우주국(NASA)의 화성탐사 로버 퍼서비어런스가 화성에서 생명체의 구성요소인 유기화학물질을 발견했다. 퍼서비어런스는 화성의 고대 호수였던 예제로 크레이터의 바닥에서 조사한 일부 암석에서 탄소 함유 유기화학 물질을 확인했다고 미션 팀원들이 12월 15일(미국동부시간) 발표했다. 하지만 이것이 화성 생명체의 탐지를 의미하는 것은 아니다. 유기물은 생물학적 과정뿐 아니라 비생물학적 과정 으로도 생산될 수 있으며, 이번에 발견된 유기화학 물질이 어떤 과정에서 유기 화합물을 생성했는지 파악하려면 더 많은 작업이 필요하다. 퍼서비어런스는 빠르면 2031년에 NASA-유럽 우주국의 공동 작업으로 지구로 운반할 샘플을 수집하고 있다. NASA 제트추진연구소(JPL)의 루터 비글은 성명을 통해 "샘플이 지구로 반환될 때까지 해결되기 힘든 문제이지만 유기물의 보존된 상태는 매우 흥미진진하다"고 말했다. 퍼서비어런스의 셜록(SHERLOC/Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) 기기의 수석 연구원인 비글은 "이 샘플이 지구로 반환되면 수년 동안 과학적 탐구와 발견의 원천이 될 것"이라고 덧붙였다. ​자동차 크기의 퍼서비어런스는 고대 화성의 큰 호수와 삼각주가 있던 폭 45km의 예제로 크레이터에 지난 2월 착륙했다. 퍼서비어런스는 두 가지 주요 임무를 가지고 있는데, 화성에서 고대 생명체의 흔적을 찾는 것과 인류 최초의 화성 샘플 반환을 위한 자료를 수집하는 것이다. 두 번째 임무를 위해 로버는 43개의 티타늄 튜브를 가져갔으며 그 중 6개는 현재까지 밀봉되어 있다. 봉인된 튜브 중 4개에는 코어 암석 샘플이 들어 있으며, 하나에는 화성 대기 샘플이 있고, 다른 하나는 임무 팀원이 퍼서비어런스가 지구에서 묻혀간 오염물질을 발견하는 데 쓰이는 '검색' 물질을 보유하고 있다고 JPL 관계자는 같은 성명에서 밝혔다. 퍼서비어런스는 화성에서 처음 몇 달 동안 장비와 시스템을 점검한 데 이어 2월에 탐사선과 함께 착륙한 인저뉴어티 헬리콥터의 초기 개척 비행을 지원했다. 또한 6월 초부터는 과학 임무에 집중하기 시작했으며, 그 이후로 상당한 진전을 이루어냈다. 예를 들어, 미션 팀 구성원이 수요일 뉴올리언스에서 열린 미국지구물리학연맹 가을 회의에서 공개한 유기물 발견을 들 수 있다. 셜록(SHERLOC)은 퍼서비어런스가 드릴로 연마한 일부 암석 내부의 유기물과 연마되지 않은 암석 상단의 먼지에서 유기물을 식별했다고 JPL 관계자가 수요일 성명에서 밝혔다. 비글은 2012년 8월부터 154km 폭의 게일 분화구를 탐사해온 NASA의 큐리오시티 탐사선을 언급하며 "큐리오시티는 또한 게일 분화구 내 착륙 지점에서 유기물을 발견했다"면서 "셜록의 기능은 암석 내부의 유기물의 공간적 분포를 매핑하고 그곳에서 발견되는 광물과 유기물을 연관시키는 능력으로, 이것은 유기물이 형성된 환경을 이해하는 데 도움이 된다"고 덧붙였다. 또 다른 퍼서비어런스 장비인 PIXL(X선 지표화학을 위한 행성 장비)은 고대 환경에 더욱 초점을 맞추고 있다. 사우스 세이타라고 불리는 에제로의 한 구역에서 마모된 암석의 PIXL 분석은 휘석 결정과 함께 놀랍도록 풍부한 감람석 결정을 보여주었다고 미션 팀원들이 발표했다. 패서디나에 있는 캘리포니아 공과대학의 퍼서비어런스 프로젝트 과학자인 켄 팔리는 "훌륭한 지질학 학생은 그러한 질감이 천천히 냉각되는 마그마(예: 두꺼운 용암 흐름, 용암 호수 또는 마그마 챔버)에서 결정이 성장하고 정착할 때 형성된 암석을 나타낸다고 말할 것"이라고 같은 성명에서 밝혔다. 팔리 박사는 "그 후 암석은 물에 의해 여러 번 변형되어 미래 과학자들이 예제로에서 발생한 사건의 연대를 측정하고, 표면에 물이 흔했던 시기를 보다 잘 이해하고 행성의 초기 역사를 밝힐 수 있는 보물 창고가 되었다"면서 "화성 샘플 반환에는 선택할 수 있는 훌륭한 것들이 있을 것!이라고 기대를 나타냈다. 퍼서비어런스가 계속해서 예제로의 상태를 측정해간다면 앞으로 몇 달, 몇 년 동안 그 퍼즐과 다른 많은 문제를 해결하는 데 도움이 될 수 있을 것으로 기대되고 있다. 이러한 탐사는 화성 지하로 확장될 것이며, 또한 임무 팀은 로버의 지표 관통 레이더 장비의 데이터를 사용하여 생성된 최대 10미터 깊이의 지하 스냅샷인 최초의 퍼서비어런스 '레이더그램'을 발표했다. JPL 관계자는 성명에서 "표면 아래에서도 지질학적 특징을 관찰할 수 있는 능력은 화성에서 팀의 지질학적 매핑 능력에 새로운 차원을 추가한 것"이라고 밝혔다. 
  • 누리호 ‘히든 피겨스’, 꿈을 쏘다

    누리호 ‘히든 피겨스’, 꿈을 쏘다

    누리호에도 ‘히든 피겨스’가 있다. 지난 10월 21일 발사된 한국형 발사체 누리호를 총괄한 한국항공우주연구원(항우연) 한국형발사체개발사업본부의 250명 중 연구직 여성은 총 10명에 불과하다. 미국 항공우주국(NASA)에서 일하는 흑인 여성 엔지니어들의 고군분투를 그린 영화 ‘히든 피겨스’처럼 누리호에도 우주를 향한 꿈을 쏘아 올리는 여성들이 있다.누리호는 발사 후 공중에서 2단과 3단 엔진 점화, 단 분리가 이뤄지고 페어링·위성 분리까지 성공하며 모형 위성(모사체)을 700㎞ 상공으로 쏘아 올렸다. 그러나 마지막 단계인 위성을 목표 궤도에 안착시키는 데는 이르지 못해 ‘절반의 성공’이라는 평가를 받는다. 우리 기술이 집약된 첫 발사체를 쏘아 올리며 자부심과 아쉬움을 함께 느낀 여성 과학자들을 최근 대전 유성구 항우연에서 만났다. 발사체체계사업관리팀 소속으로 발사 당시 ‘카운트다운’을 맡았던 이효영 선임연구원, 발사체구조팀에서 추진체 탱크 설계를 담당한 정연희 선임연구원이다.-소개를 부탁드립니다. 이효영 “발사체 연구개발 과정에서 나오는 정보에 대해 관리계획을 수립하고, 정보 시스템을 운영하는 일을 하고 있어요. 발사 운용을 하다가 혹시라도 생길 손해에 대비, 우주보험에 가입하는 업무도 담당했습니다.” 정연희 “저는 누리호 개발을 시작해 인력을 충원하던 2014년에 입사했고요. 그때부터 지금까지 발사체구조팀에서 구조물의 설계, 제작, 개발을 담당하는 업무를 하고 있습니다. 구체적으로는 추진체 연료탱크 설계 및 시험평가 일을 하고 있어요.” -누리호가 발사되던 그 순간을 복기해 본다면요. 이 “발사 당일 저는 발사통제지휘소에서 전체 진행 상황을 방송하는 역할을 했어요. 발사 10분 전부터 카운트다운을 준비하면서 발사체가 이륙한 이후의 시퀀스를 안내해 주는 자리에 있었죠. 색다른 경험이었어요. 제가 기존에 담당하는 역할하곤 전혀 다른 거니까요. 쏘아 올리기 전 10분 동안은 완전 초긴장 상태로 몰입했어요. 지휘소 안 화면에서 발사대를 폐쇄회로(CC)TV가 비추고 있는데, SF 영화를 보는 듯한 느낌이 들더라고요. 밖에서 함성 소리가 들리니까 ‘올라가고 있구나’ 싶었죠.” 정 “기체 이상이 발생하면 즉시 투입될 수 있게 비상대기 중이었어요. 발사통제센터가 있는 건물 3층에서 카운트다운 돌입이 되니까 다들 창쪽으로 달려가서 봤죠. 처음엔 ‘정말 이게 실제인가’ 하는 생각이 많이 들었어요. 하늘 위 점이 될 때까지 보고 있다가 바로 발사 현황을 볼 수 있는 곳으로 갔죠. 이 선임이 하시는 안내 방송을 들으면서 ‘1단 잘 분리됐구나’, ‘페어링 분리됐구나’ 하면서 각 부분 담당들이 앞으로 갔다가 자기 차례가 끝나면 뒤로 나와요.(웃음) 저는 엔진 연소에 필요한 연료를 저장하는 추진체 탱크를 담당하는데 ‘엔진 연소 종료’라고 하길래 내 임무는 무사히 끝났구나 싶어서 박수 치며 뒤로 빠졌죠. 근데 3단 비행할 때 어떤 분이 핸드폰 타이머로 체크하시더니 연소 시간이 짧다는 거예요. 이어 대통령 담화문 발표한다고 우르르 내려갔는데 ‘절반의 성공’ 얘기가 나와서 무슨 일인가 싶었죠.”-누리호가 발사되기까지 준비 과정을 떠올려 본다면요. 어떤 점이 가장 힘드셨나요. 이 “제 입장에서는 보험에 가입하는 일이 가장 힘들었어요. 유엔의 국제협약에 의해 발사 전에는 배상책임보험에 들어야 해요. 저희가 자체적으로 손해를 보상하기 위한 보험도 들고요. 누리호가 국내 기술이 집약된 첫 발사체이다 보니 신뢰성을 입증할 수 있는 방법이 없고, 보험사 찾는 것도 쉽지 않았어요. 저희가 받은 예산 안에서 가입 조건을 맞추는 것도 어려운 작업이었고요. 필수 보험 가운데 제3자손해배상책임보험은 6월에 들었지만, 재산종합보험은 마지막 리허설하던 날 들었어요. 어쨌든 그 날짜에는 맞춰서 한숨 돌렸죠.” 정 “설계부터 제작, 시험까지 구조적으로 안전하다는 걸 확인한 다음 전체 조립을 할 수 있게 납품하는 식인데요. 그 과정에서 제 실수로 제대로 요구 조건을 만족하지 못하면 예산이나 개발 기한에 손해를 끼칠 수밖에 없는 상황이라 부담감이 엄청 컸어요. 실제로 저희는 아무것도 모르는 상황에서 처음부터 설계·제작하다 보니까 수많은 시뮬레이션을 해 보더라도 예측하지 못한 상황들이 나와요. 학교에서 논문만 쓰다가 실질적으로 대형 사업에 투입이 되니 부담스럽더라고요.” ‘우리 기술로 발사는 처음이라’ 겪은 어려움과 함께 보람도 컸다. “제 평생 사실 발사 이벤트 같은데 참여해서 볼 수 있는 기회가 몇 번이나 되겠어요”(정 선임), “주변에서 ‘누리호에서 일을 한다고?’라면서 안부를 물을 때 ‘내가 정말 국가적인 사업에 기여하고 있구나’라는 생각이 들어서 기쁘더라고요”(이 선임) 같은 일들이다. 발사 전날 한 언론과의 인터뷰에서 정 연구원은 누리호에 “다시는 보지 말자, 잘 가”라고 했다고 한다. “정말로 다시는 못 보게 돼서 조사에 어려움이 많다”며 정 연구원은 웃었다. 누리호를 두고 ‘절반의 성공’, ‘95%의 성공’ 등 여러 말이 나오는 가운데 직접 개발에 참여한 이들은 이러한 평가들에 어떤 생각을 갖고 있을까.-누리호 발사를 두고 자평해 본다면. 이 “저희도 처음 발사체를 개발했고, 첫 비행 시험에서 이 정도 정상적으로 발사 운용도 진행됐고, 시퀀스도 정상적으로 이뤄졌잖아요. 위성 분리까지 마무리됐기 때문에 기대 이상의 성과라고 생각하고 다들 노력한 결과라고 봐요. 하지만 프로젝트의 임무 자체가 모사체를 궤도에 안착시키는 건데, 그건 실패했으니까 외부에서는 ‘절반의 성공’이라고 말해도 저희 입장에서는 실패인 거죠. 그 점에서는 많이 안타까워요.” 정 “저희는 사실 테스트 발사였거든요. 한 번도 클러스터링(엔진을 다발로 묶어 추진력을 높이는 기술)한 엔진에 불을 붙여 날려 보고, 단 분리도 해 본 적이 없잖아요. 지상에서 정말 많은 시험을 하는데, 그 데이터랑 발사했을 때 계측한 데이터를 비교해 보면 다른 점들이 많더라고요. 어떻게 물리적으로 달라지는지를 얻기 위한 시험이었거든요. 지금 단계에서 ‘성공이냐, 실패냐’고 말하는 건 의미가 없는 거 같아요. 다만 저희가 데이터를 받아서 분석을 해 보니까 아쉬운 부분들이 있거든요. 그런 부분들을 보완해 나가면서 2차 발사를 더 성공적으로 하기 위한 개발의 과정인 거죠.” 누리호의 ‘절반의 실패’ 원인을 두고는 조사가 한창 진행 중이다. “원인 규명이 늦어진다”는 외부 평에 대해 정 선임은 “3단 엔진 연소의 조기 종료 원인에 대해 조사위원회 활동과 함께 내부적으로도 조사 워킹그룹에서 논의하고 있다”며 “제대로 분석하기 위해 시간이 걸리는 것이며 그게 더 빨리 문제를 해결할 수 있는 방법”이라고 말했다. 내년 5월에 있을 2차 발사를 앞두고도 2차 비행 모델 조립과 함께 관련 예산 배분 등이 진행되고 있다. 두 사람이 항우연에 입사할 당시를 떠올려 보면 딱히 우주를 꿈꾸고 들어온 것은 아니었단다. 이 선임은 정보통신공학 전공(광주과학기술원 석사)자이고, 정 선임은 구조역학 전공(서울대 비행체특화연구센터 박사 후 연구원)자다. 다만 “초등학교 때 과학교실에서 화학 실험을 하는데 반응이 일어나는 게 너무 재밌었어요”(이 선임)라든지 “고등학교 때 학교에서 물리2를 가르치지 않는데 혼자 공부해서 수능을 쳤던 기억이 있어요”(정 선임) 등의 ‘열혈 이과생’ 기억은 있다. “특별할 것 없는 이과생이었다”고 두 사람은 입을 모아 말했다.-영화 ‘히든 피겨스’를 보면 주인공인 흑인 여성 3명이 NASA의 절대 소수죠. 두 분도 항우연 발사체본부에서 같은 위치인 듯한데요. 정 “이건 협력하는 민간 업체에 가도 그래요(누리호 개발에 직간접적으로 참여한 산업체만 300여개다). 제작을 하다 보니까 업체를 가잖아요. 시험을 하다가 잠깐 시간이 있을 때 저 멀리 있는 화장실에 달려갔다 와야 해요. 사무실 끝에 여성 화장실이 딱 하나 있어요. 작업장 엔지니어들 중에 여성이 거의 없어 생긴 일이죠.” 이 “일반적으로 남성들이 많으면 여성들의 행동이 주목을 받을 수밖에 없어요. 저희가 점심 먹고 산책을 하거나 그러면 아무래도 눈에 띄나 봐요. ‘무슨 얘길 그렇게 하나’ 궁금해들 하더라고요. 애들 양육하는 정보 공유하고 그런 건데, 그런 게 너무 주목받으니까 말이나 행동에서 조심스러워질 수밖에 없어요.” 정 선임이 “이 인터뷰도 사실 무척 부담스럽다”고 하자 “일반적으로 할 수 있는 얘기인데도 조심스러울 때가 있다”며 이 선임이 거들었다. ‘히든 피겨스’ 때와는 사회적인 인식과 상황이 많이 달라졌다는 걸 느끼기도 한다. “‘우리가 이렇게 의견을 개진해도 되나?’ 싶을 때 서로 상의하고 여성들끼리도 단합하려고 노력하고 있다”고 했다. -아직도 과학계의 기울어진 운동장을 걱정하는 젊은 여성 과학도들이 많습니다. 그들에게 해 주고 싶은 말이 있다면요. 이 “‘롤모델’로서의 여성들을 보면 성공하신 분이 많아요. 제가 여성 과학도라고 하면 ‘저렇게까지 해야 하는구나’, ‘저런 능력이 있어야 되는구나’ 같은 생각 때문에 더 자신감을 잃을 거 같더라고요. 여기 안에 와서 일하시는 분들 보면 다 비슷해요. 밖에서 봤을 땐 항우연에서 일하는 사람들은 다 대단하다 싶겠지만 그렇게까지 걱정하지 않아도 될 거 같아요. 대부분은 직장인인 거고, 자기한테 주어진 역할을 최선을 다해서 하는 사람들이거든요. 발사체 사업이라는 게 정말 시스템 산업이에요. 누구 하나만 잘해서 될 일이 아니라 각자 역할을 충실히 해서 협업해야 온전히 날아갈 수 있어요.” 정 “이왕이면 항우연에 많은 여성들이 오면 좋겠어요. 특히 발사체 분야에요. 저희가 멘토링 활동, 과학 강연 같은 걸 가끔 나가는 이유가 여성들도 ‘이런 일을 할 수 있다’는 걸 보여 주기 위해서거든요. 부담 갖지 말고 와서 같이 일했으면 합니다.” 두 사람에게 “여러 우려에도 불구하고 우주로 가야 하는 이유”를 물었다. “우주로 쏘는 이벤트 하나만을 위해 하는 건 아니다. 첨단기술의 집약체로서 여러 가지 산업으로 확장될 수 있기 때문”(정 선임)이라는 대답과 “애 키우는 입장에서 아이들에게 우리도 우주로 갈 수 있다는 희망이 되기 때문”이라는(이 선임) 답변이 돌아왔다. 두 사람의 향후 계획은? “애 키우면서 회사 다닐 것”이라고 두 사람 다 ‘심플’하게 말했다.
위로