찾아보고 싶은 뉴스가 있다면, 검색
검색
최근검색어
  • 물리학
    2026-01-23
    검색기록 지우기
  • 검찰청
    2026-01-23
    검색기록 지우기
  • 화가
    2026-01-23
    검색기록 지우기
  • 경남
    2026-01-23
    검색기록 지우기
  • 관저
    2026-01-23
    검색기록 지우기
저장된 검색어가 없습니다.
검색어 저장 기능이 꺼져 있습니다.
검색어 저장 끄기
전체삭제
5,630
  • [한길 큰길 그가 말하다] 이영희 성균관대 교수

    [한길 큰길 그가 말하다] 이영희 성균관대 교수

    깡촌 소작농의 아들 누나의 희생으로 진학 철도원으로 살다가 다시 주경야독육사에 붙고도 결핵으로 불합격그래도 내 결론은 도전박운상 선생님 덕에 물리학에 눈떠4년 만에 석·박사 탄소나노튜브 실험과 응용 연구나는 콧수염 학자 애벌레처럼 살 거야 “제가 원래 털이 빨리 자라는 편이에요. 철도원 생활을 하다가 스물두 살에 대학에 들어갔는데 공부를 오랜만에서 해서 그런가, 너무 재미가 있는 거예요. 공부에만 정신이 팔리니까 다른 일들은 다 귀찮아지더군요. 하루이틀 안 깎은 게 60이 넘은 지금까지 이어지고 있는 거죠.” 콧수염의 역사를 묻자 이영희(61) 교수는 “사람들이 전공인 탄소나노튜브보다 이 털들을 더 궁금해하니 큰일”이라며 껄껄 웃었다. 경기 수원에 있는 연구실(성균관대 자연과학캠퍼스 물리학과)로 그를 만나러 간 지난 15일은 전국에 매서운 한파가 몰아친 날이었다. 기초과학연구원(IBS) 나노물리구조연구단 단장을 겸하고 있는 이 교수는 7명의 교수, 30명의 박사후연구원 및 연구교수, 80명의 석·박사 과정 학생 등 120명에 이르는 대식구와 분주한 하루를 보낸다. “학생들 논문 지도 때문에 요즘 정신이 없다”며 약속 시간에 30분 늦은 데 대해 양해를 구했다. -1974년 2월의 어느 날 아침. 그날도 오늘처럼 추웠다. 기차를 타고 출근하며 메마른 창밖을 내다보는데 문득 ‘10년 뒤에 나는 어떤 삶을 살고 있을까’ 하는 생각이 들었다. 국립철도고를 졸업하고 철도청에 들어간 지 한 달 정도 됐을 때였다. 인천 부평에서 누나 집에 얹혀살며 매일 근무지인 서울역으로 통근을 했다. 갑작스럽게 든 생각처럼 결론도 갑작스럽게 났다. ‘그래, 다시 공부를 하는 거야. 공부를 하다 보면 새로운 길이 열리겠지.’ 그때 고민만 하고 끝났다면 지금쯤 난 한적한 시골역의 역장이 돼 있지 않았을까 생각해 본다. 물론 그렇게 산 것도 나쁘지는 않았을 것 같다. -중학교 때까지 전북 김제의 깡촌에서 자랐다. 논이 동네 주변을 빙 둘러싸고 있는 전형적인 농촌 마을이었다. 누가 “이 동네에서 가장 못사는 집이 어디냐”고 묻는다면 누구라도 우리 집을 가리켰을 것이다. 부모님은 다른 사람의 땅을 빌려 농사를 짓는 소작농이었다. 좀 더 정확히는 머슴에 가까웠지만. 그런 부모님을 보면서 초등학생 때 가진 꿈은 말을 타고 돌아다녀야 할 정도로 큰 농장을 갖는 것이었다. 가난하다는 이유로 아버지가 어린 사람에게까지 무시당하는 게 너무 싫었다. 그래서 초등학교 때는 동네 형들하고도 주먹질을 할 정도로 괄괄한 ‘이씨네 말썽꾸러기’로 통했다. -원래 집안 사정이 안 좋기는 했지만 애들이 공부도 제대로 못 할 만큼 어려워진 것은 ‘딸깍발이’ 할아버지 탓이 컸다. 일제가 쳐들어와 양반들이 몰락하자 “왜놈들 세상에선 아무것도 안 한다”며 평생 돈벌이라곤 하지 않으셨다. 집 안에 먹을 게 다 떨어져 자식들이 굶고 있는데도 할아버지는 소신만 지키셨던 것 같다. 평생 힘들게 사신 아버지와 어머니를 생각하면 할아버지에 대한 원망은 지금도 여전하다. 어려서 “할아버지 때문에 우리 집은 이게 뭐냐”고 대들다가 아버지나 삼촌들한테 맞은 적도 여러 차례 있었다. -가난한 집에 먹는 입은 많다고, 나는 3남 2녀 중 장남이었다. 바로 위 누나를 생각하면 지금도 눈물이 나고 미안한 마음이 크다. 누나는 집안 사정 때문에 제대로 된 교육을 받지 못했다. 우리를 위해 모든 것을 바쳤다. 내가 이만큼이나마 된 것도 그렇지만 여동생과 남동생이 초등학교 교사와 공무원을 하고 있는 것도 누나의 희생을 바탕으로 가능했다. -부모님은 “우리 장남 영희는 중학교까지는 나와야지”라고 입버릇처럼 말씀하셨다. 뒤집어 보면 중학교 졸업도 쉽지 않은 일이어서 그랬는지 모른다. 남의 집 머슴일을 하면서 틈틈이 중학교 등록금을 모아 놓으셨는데, 어느 날 그 돈을 한꺼번에 잃어버리는 일이 벌어졌다. 중학교에 못 가게 될 상황이 된 거였다. 그때 이웃집 할머니께서 “사내놈이 중학교까지는 나와야 하지 않겠나”라며 여기저기 수소문해 장학금을 받을 수 있도록 다리를 놓아 주셨다. 그게 나에겐 약이 됐다. 중학교 들어가서 정말 미친 듯이 공부만 했다. 한 초등학교 친구가 “영희가 미쳤다”고 말하고 다닐 정도였다. 꿈은 없었다. 그냥 공부를 잘하는 걸로 만족이었다. -대학교까지는 아니더라도 고등학교는 마치고 싶었다. 집안 사정을 생각하면 인문계는 언감생심이었다. 그러다 나라에서 세운 철도고에 들어가면 학비 대주고, 나중에 취업까지 시켜 준다는 얘기를 들었다. 딱 내 학교였다. 그렇게 철도고에 들어갔는데 철도원으로 인생의 방향이 정해지다 보니 별달리 꿈이란 게 생길 턱이 없었다. 머리건 몸이건 좀 더 써 보고 싶은데, 내 몸의 혈액과 호르몬들은 나에게 한계 상황까지 가 보라고 다그치는데 현실은 그저 ‘등교-수업-하교’가 전부였다. 그러다 유도를 시작했다. 먹고 자는 시간과 수업받는 시간을 빼고는 그것만 했다. 다른 생각은 없었다. 어떻게 하면 상대방을 멋지게 업어치고 메칠 수 있을까, 관심은 그것뿐이었다. -1974년 1월 5일 토요일에 졸업식을 하고 7일 월요일 서울역으로 첫 출근을 했다. 통신전자과 출신인 나에게는 통신기지국과 열차 간 송수신기에 문제가 없는지를 점검하고 열차 자동 정지장치를 수리하는 일이 부여됐다. 그렇게 정신없이 한달을 지내고 난 어느 날 아침, 불현듯 미래에 대한 고민이 들었던 것이다. -주경야독(晝耕夜讀)이 시작됐다. 딱히 어떤 대학, 어떤 학과를 가겠다는 생각 같은 건 없었다. 공부가 하고 싶었다. 배움에 대한 갈증에 공부를 벌컥벌컥 마시고 싶었다고나 할까. 실업계 학교를 나왔으니 당연히 대학 입시 기초가 약했다. 서울 종로2가에 있는 종로YMCA에서 대학입시반 수업을 듣기 시작했다. ‘난 책 읽고 글 쓰는 걸 좋아하는 국문학과가 어울릴까? 수학 문제를 풀 때가 제일 신나는데, 그리로 가 볼까?’ -물리학을 공부하기로 한 것은 학원에서 ‘분석물리’ 과목을 가르치던 박운상 선생님 덕이다. 입시 학원이었음에도 문제 풀이 요령만 가르치는 게 아니라 간단한 실험도구를 갖고 물리를 알기 쉽게 설명하는 모습을 보면서 “물리학도 문학만큼이나 세상을 아름답게 표현해 내는구나.” 거창하게 말하면 내 인생이 ‘코페르니쿠스적 전환’을 맞는 순간이었다고나 할까. -1975년 초 기관차 수리 공장이 있는 수색역으로 발령났다. 24시간 근무하고 24시간 쉬는 곳이라 공부하기엔 좋았지만 그러다 보니 체력은 바닥나고 업무 환경도 그리 좋지 않아 대입 공부를 시작한 지 1년 만에 결핵이라는, 당시로서는 꽤 중한 병을 얻었다. “고등학교 졸업해 번듯한 직장까지 얻었으면서 몸까지 상해 가면서 대학을 가려고 하느냐.” 아버지는 나를 꾸짖다가 “다 내가 못나서 널 제때 공부를 못 시켜 준 탓”이라며 통곡을 하셨다. -‘먹여 주고, 입혀 주고, 재워 주고, 공짜로 공부시켜 주는 곳.’ 내가 가야 할 대학의 최우선 조건이었다. 육군사관학교에 지원했다. 필기·실기시험에 모두 합격했지만 결핵 때문에 신체검사에서 떨어졌다. 그때의 상실감은 아주 컸다. 회사에 2개월 휴직계를 냈다. 머리까지 박박 밀고 고향집에서 2주 동안 한 발짝도 나오지 않았다. 나중에 들은 얘기지만 부모님께서는 ‘얘가 죽으려고 하는 것 아닌가’ 걱정하셨단다. 방 안에 틀어박혀셔 ‘과연 나는 뭘 해야 할까’ 고민을 했다. 결론은 ‘일단 시작한 것, 원 없이 한번 도전해 보자’는 것이었다. -2개월 휴직 기간이 끝나니 김제에서 가까운 익산역으로 근무지가 바뀌었다. 직장 생활과 대학 생활을 병행할 수 있는 곳을 찾았다. 전북대 물리학과였다. 입학 성적이 좋아 장학금을 받고 76학번으로 입학했다. 함께 일하는 직장 선배가 눈감아줘 근무 시간에 전공 수업을 들으러 학교에 갔다. 그러기를 1년. 공부도 어려웠지만 무엇보다 회사에 못 할 짓이란 생각이 들었다. 사표를 냈다. -죽어라고 공부만 했다. 장학금 받기 위해서도 필사적이 될 수밖에 없었다. 그렇게 이뤄진 공부가 쌓이자 내 평생의 업이 될 수 있겠다는 생각이 들었다. 대학원 진학을 결심했다. 지도교수님께서 미국 켄트대를 추천해 주셨다. 입학 지원서를 냈는데 놀랍게도 전액 장학금을 주겠다고 했다. 1982년 8월 졸업이 예정돼 있었는데 가을 입학을 하라는 통보를 받아 7월 미국으로 건너갔다. 유학 후 첫 학기를 끝낸 1월 갑자기 온몸이 아파 왔다. 이러다 죽는 것 아닌가 하는 생각이 들었다. 하지만 웬걸. 학교 보건소 의사는 타이레놀 한 알을 주더니 “푹 자라”고 했다. 다음날 거짓말처럼 멀쩡해졌다. 유학에서 비롯된 극심한 스트레스였다. -좋아하는 공부를 장학금 받고 해서 그랬을까. 석·박사 과정을 4년 만에 초고속으로 마쳤다. 박사 학위를 받게 됐다고 모교인 전북대 교수님께 말씀드렸더니 “마침 우리 학교에 교수 자리가 하나 났으니 지원하라”고 하셨다. 덜컥 합격했는데 그게 1986년 여름이었다. 7월 켄트대 학위수여식을 한 달 앞두고 모교에 돌아왔다. 고등학교 때부터 박사 때까지 희한하게 다음 단계로 진행하는 과정이 순조로웠는데 외려 그것 때문에 나는 졸업식에 참석해 본 적이 없다. 그 흔한 학위 모자를 쓰고 찍은 사진이 없다. 아들내미와 딸내미가 아빠 학력 위조한 거 아니냐고 말한 적도 있었다. -반도체 물리학이 전공이었지만 다양한 분야에 항상 눈과 귀를 열어 놓고 있었다. 1991년 탄소나노튜브가 세상에 처음 소개됐다. 논문들을 읽다 보니 지금까지와는 다른 세계를 본 듯한 충격을 받았다. 무엇보다 기초연구이면서도 실험과 응용연구가 가능했다. 대단한 매력이었다. 물리학은 다른 학문과 달리 이론과 실험 두 분야를 동시에 하는 경우가 거의 없다. 그렇지만 내게는 공고 출신이라는 남다른 이력이 있었다. 직장에서 열차 무전기를 고쳤던 경험 등 현장에도 익숙하다. 그래서 이론물리학을 전공했지만 실험과 응용연구에 두려움이 없었다. -일반 사람들에게 내 연구 분야는 아주 생소하다. 이름부터가 그렇지 않은가. 탄소는 뭐고, 나노는 뭐고, 거기에 튜브는 뭐란 말인가. 탄소나노튜브 연구가 잘 이뤄지면 요즘 많은 사람이 관심 갖는 전기자동차의 상용화를 앞당길 수 있다는 정도로 설명하면 이해가 쉬울까. 탄소나노튜브를 응용하면 고성능 에너지 저장장치를 만들 수 있고 이를 통해 전기차의 생명인 배터리 성능을 획기적으로 개선할 수 있다. 전자 소재로 응용될 경우 지금과는 비교도 안 되게 빠른 초고속 컴퓨터를 만들 수도 있다. 응용 분야가 무궁무진하기 때문에 각국의 연구자들이 지금 이 시간에도 눈에 불을 켜고 책과 논문을 파고 실험을 하는 것이다. 탄소나노튜브의 기초이론을 보강하고 응용연구로 연결시키는 과정은 앞으로도 지난할 것이다. 그게 바로 내가 후배들과 함께 가야 할 길이다. -과학자들은 다른 사람들이 가지 않은 길을 가는 경우가 많다. 그러다 보니 자주 막다른 길에 부딪힌다. 그럴 때마다 나 자신은 물론 연구원들에게도 나는 트리나 폴러스의 ‘꽃들에게 희망을’이란 책에 나온 구절을 인용한다. ‘애벌레가 화려한 나비로 거듭날 수 있는 것은 중간에 포기하고 싶어질 정도의 시련에도 불구하고 성공을 의심하지 않고 끝까지 도전하기 때문이다.’ 많은 사람들이 ‘인생 최종 목표’를 묻는데 나는 그런 것이 없다. “내 최종 목표는 이거다”라고 정해 버리면 그것을 성취하고 난 다음에는 무슨 재미로 삶을 살겠나. 나도 알 수 없는 미지의 내 인생 최종 목표를 향해 이제 제대로 한 걸음 뗄 수 있는 준비가 됐다는 생각으로 하루하루를 살아간다. 유용하 기자 edmondy@seoul.co.kr 【이영희 성균관대 물리학과 교수】 우리나라보다 해외 학계에서 더 유명하다. 기초과학연구원(IBS) 나노물리구조연구단장을 함께 맡고 있는 그는 전 세계 대학 연구실과 산업 현장에 ‘탄소나노튜브’ 열풍을 일으킨 한국의 대표 물리학자 중 한 명이다. 차세대 신소재로 각광받는 단층 탄소나노튜브의 대량 합성과 성장 메커니즘 규명이 그의 성과다. 대부분의 물리학자들은 ‘이론’과 ‘실험’ 가운데 하나를 골라 자기 주력 분야를 정한다. 그러나 이 교수는 탄소나노튜브 이론뿐 아니라 수소 저장, 투명전극, 복합체 연구 등 산업화 기술도 함께 개발해 이론과 실제를 겸비한 학자로 평가받는다. 그래서 누가 “기초과학은 투자 대비 성과가 적다”, “기초과학은 돈이 안 된다” 같은 말을 하면 질색을 한다. ‘기초과학을 통해 우리나라의 국가 경쟁력을 높인다’는 게 그가 제자들에게 항상 강조하는 말이다. ▲1955년 전북 김제 출생 ▲1987년 전북대 물리학과 교수 ▲1989년 미국 에임스국립연구소 방문연구원 ▲1993년 IBM 취리히연구소 방문연구원 ▲2001년 성균관대 물리학과 교수 ▲2006년 한국물리학회 학술상 수상 ▲2006년 국가석학 선정 ▲2014년 수당상 기초과학분야 수상. 【탄소나노튜브 Carbon nanotube】 탄소 6개로 이뤄진 육각형 모양이 서로 연결돼 가늘고 긴 대롱 모양을 이루고 있는 신소재. 1991년 일본 이지마 스미오 박사가 처음 발견한 이 물질은 튜브의 지름이 머리카락 굵기의 10만분의1에 불과한 나노(10억분의1)급 크기여서 탄소나노튜브로 불린다. 탄소나노튜브는 구리보다 전기 전도율이나 열 전달률이 우수하고 강도도 강철보다 100배 높은 것으로 알려져 있다. 반도체, 배터리, 초강력 섬유, 생체 센서 등으로 다양하게 활용될 것으로 기대된다. “제가 원래 털이 빨리 자라는 편이에요. 철도원 생활을 하다가 스물두 살에 대학에 들어갔는데 공부를 오랜만에서 해서 그런가, 너무 재미가 있는 거예요. 공부에만 정신이 팔리니까 다른 일들은 다 귀찮아지더군요. 하루이틀 안 깎은 게 60이 넘은 지금까지 이어지고 있는 거죠.”
  • 책으로 만나는 과학…서대문, APCTP 선정 과학책 시리즈 강연

    서대문구는 서대문자연사박물관에서 ‘아시아태평양 이론물리센터(APCTP) 선정, 2015년의 과학책을 읽다’ 시리즈 강연을 진행한다고 23일 밝혔다. APCTP는 양질의 과학 콘텐츠 생산과 독서문화 활성화를 위해 매년 연말에 그해의 우수 과학도서 10권을 선정하고 있다. 구는 이 가운데 5권을 뽑아 저자나 관련 전문가를 강사로 초청해 해당 도서의 핵심 내용을 듣고 이해할 수 있는 프로그램을 마련했다. 강연은 다음달 10일부터 4월 7일까지 매주 목요일 오후 7시부터 2시간 동안 서대문자연사박물관 1층 시청각실에서 열린다. 첫 강연에서는 ‘세상물정의 물리학’ 저자인 김범준 성균관대 교수가 여러 가지 복잡한 사회현상을 통계물리학을 통해 흥미롭게 풀어낸다. 또 ‘비숲’의 저자인 생명다양성재단 김산하 박사는 자신이 인도네시아 열대 우림에서 생활한 2년간의 모험기를 소개한다. 비숲은 열대 우림(rainforest)을 우리말로 옮긴 것이다. 과학동아 윤신영 편집장은 고대 DNA를 연구해 인간의 본질과 인류의 기원을 파헤친 스반테 페보의 저서 ‘잃어버린 게놈을 찾아서’에 관해 강의한다. 최근 100년 만에 밝혀진 아인슈타인 중력파에 대한 관심이 높아지는 때에 미국에서 중력파 탐지를 이끈 킵 손의 저서도 만날 수 있다. 이번 시리즈 강연은 APCTP가 주최하고 서대문자연사박물관이 주관하며 무료로 진행된다. 대상은 성인과 중고생으로 강좌당 50명이 정원이다. 신청은 서대문자연사박물관 홈페이지(namu.sdm.go.kr)를 통해 할 수 있다. 김동현 기자 moses@seoul.co.kr
  • 아인슈타인 이론 깰 ‘5차원 블랙홀’ 재현 성공 - 물리학 연구

    아인슈타인 이론 깰 ‘5차원 블랙홀’ 재현 성공 - 물리학 연구

    아인슈타인의 일반상대성이론을 ‘깰’ 수 있는 ‘5차원 블랙홀’이 실존한다면? 과학자들이 컴퓨터 시뮬레이션을 통해 5차원 블랙홀이라고 불릴 수 있는 독특한 블랙홀을 만들어내는 데 성공했다고 과학매체 와이어드 영국판이 19일(현지시간) 보도했다. 영국 케임브리지대와 런던 퀸메리대 공동 연구진은 슈퍼 컴퓨터 시뮬레이션으로 얇은 고리 모양의 블랙홀을 구현했다. 이른바 ‘블랙링’이다. 공개된 시뮬레이션을 보면, 5차원 블랙홀은 전체적으로 팽창했다가 다시 조금 줄어들더니 회전을 한다. 그러면서 동서남북처럼 대칭을 이루는 네 방향의 일부분이 급격히 팽창하고, 각 부분과 연결된 각 부위는 상대적으로 가늘어지면서 독특한 블랙홀 형태를 띠게 되는 것이다. 연구진은 이런 모양을 수도꼭지에서 흘러나오는 물이 물방울로 분산하는 구조에 비유하면서도 이런 형태의 천체는 5개 이상의 차원을 가진 우주에서밖에 존재할 수 없다고 설명했다. 이런 고리 모양의 블랙홀이 처음 이론화된 시점은 지금으로부터 14년 전인 2002년이지만, 시뮬레이션에 성공한 사례는 이번 연구가 처음이다. 만일 이런 블랙홀이 실제로 존재한다면 이들은 ‘노출 특이점’(naked singularity·물질 밀도가 무한대가 되는 점으로서 사건 지평선으로 둘러싸이지 않은 특이점)의 출현으로 이어질 수 있다. 연구팀에 따르면, 노출 특이점은 일반상대성이론을 지지하는 원리와 방정식을 부정한다. 특이점은 중력이 너무 강해 시간과 공간, 물리학 법칙이 완전히 깨지는 점을 말하는 데 일반상대성이론에서 특이점은 블랙홀 내부에 존재하며 이는 중력이 너무 강해 탈출할 수 없는 한계선인 ‘사건의 지평선’에 둘러싸여 있는 것으로 설명된다. 이번 연구에 공동저자로 참여한 마커스 쿠네시 케임브리지대 박사과정 학생은 “특이점은 사건의 지평선 너머에 숨어있는 한 문제가 될 건 없다. 일반상대성이론은 유효하다”면서도 “하지만 사건의 지평선에 둘러싸여 있지 않은 ‘노출 특이점’은 현재의 물리학 법칙을 부정한다”고 말했다. 또 다른 공동저자인 사란 튜냐슈뷰나쿨 케임브리지대 박사과정 학생은 “만일 노출 특이점이 존재한다면 일반상대성이론은 깨지게 되는 것”이라면서 “만일 일반상대성이론이 깨지게 되면 모든 것이 뒤집히게 될 것”이라고 말했다. 이어 “왜냐하면 일반상대성이론이 깨지면 인과율(원인과 결과) 법칙을 더는 논의할 수 없기 때문”이라면서 “우주를 설명할 수 있는 이론은 더는 없게 되는 것”이라고 덧붙였다. 이번 연구성과는 세계적인 물리학 권위지 ‘피지컬 리뷰 레터스’(Physical Review Letters) 최신호(2월 18일자)에 게재됐다. 사진=NASA/JPL(위) 케임브리지대 윤태희 기자 th20022@seoul.co.kr
  • 입체파 화가가 물리·기하학 공부한 까닭은

    입체파 화가가 물리·기하학 공부한 까닭은

    최근 요소·변온물감 화학 반응 이용 미술품 복원에도 첨단과학 기법 접목 얼마 전 대전 대덕연구단지 내 한국화학연구원이 ‘화학과 우주’라는 주제의 미술 전시회를 열었다. 전시되는 회화 작품들은 ‘요소’와 ‘변온 물감’이라는 화학 재료와 화학반응을 이용한 것들이다. 요소는 사람의 소변 속에 포함된 물질 중 하나로 독일 화학자 프리드리히 뵐러가 시안산암모늄 수용액을 가열해 만들어 냄으로써 인간이 처음으로 합성에 성공한 유기화합물이다. 요소액과 원색 안료, 아교, 먹과 소금 등을 섞어 만든 물감을 캔버스에 채색하면 시간이 지나면서 수분은 증발하고 결정체가 만들어져 독특한 작품으로 탄생하게 된다. 변온물감은 온도에 따라 색깔이 변하는데 아무것도 없어 보이는 캔버스에 뜨거운 물을 붓거나 온도를 높여 주면 그림이 나타나게 된다. 최근 들어 이런 과학과 예술의 만남의 장이 자주 마련되고 있다. 20세기 들어 과학기술이 눈부시게 발전하면서 미술과 음악, 영화, 문학 등 다양한 장르의 예술 분야에 영향을 주고 있다. 홍성욱 서울대 과학사및과학철학협동과정 교수는 “미술 분야는 과학에서 새로운 표현 매체, 세계관, 미술을 기록하는 새로운 방법, 인간과 인간 활동에 대한 새로운 이해를 가져오고 과학은 미술로부터 새로운 비전과 과학적 세계관의 정당화 같은 통찰력을 얻는 식으로 상호 영향을 주고 있다”고 말했다. 입체파를 탄생시키고 20세기 미술계의 최고 거장으로 꼽히는 파블로 피카소는 “내 그림들은 모두 논리적 순서를 가진 연구와 실험으로 과학자가 새로운 이론이나 현상을 발견하는 것과 같다”고 입버릇처럼 얘기했다. 피카소를 필두로 한 입체파 화가들은 기존 회화의 한계를 뛰어넘기 위해 당시 최첨단 과학인, 프랑스 과학자 푸앵카레의 물리학과 비(非)유클리드 기하학을 공부했다고 한다. 입체파 훨씬 이전인 르네상스 시기에는 풍경화나 인물화 등의 사실적인 표현을 위해 투시(透視)화법이라는 신기술을 도입했다. 한 시선에 포착되는 사물의 형태를 원근법 원리에 따라 평면에 그리는 이 방법은 지금도 많은 미술 작품에서 보편적으로 사용되고 있다. 3차원 세계를 2차원 세계에 투영시키는 투시화법은 기하학의 한 분야인 사영(射影)기하학에서 기원한다. 영국의 대표적인 풍경화가인 존 컨스터블은 자연현상에 대한 과학적 이해 없이는 무지개 같은 자연을 정확히 그릴 수 없다고 믿었다. 구름을 잘 그리기 위해 기상학에서 구름의 분류를 공부하고 무지개 그림을 위해 뉴턴의 광학을 독학으로 공부했다는 것은 미술계에 잘 알려진 사실이다. 물리학이나 수학이 미술 작품의 새로운 표현 언어나 논리를 제시한다면 화학은 실제로 캔버스나 조각 작품에 어떻게 표현할 것인가에 응용된다. 회화에 쓰이는 여러 가지 안료, 조각에 쓰이는 석재·구리·철 등의 재료는 화학적 재료이고, 공예작품에 쓰이는 섬유나 유리·금속·목재도 화학적 처리 과정을 거치면서 독특한 형태의 질감이나 형태를 갖는 작품이 된다. 미술과 과학의 접목이 가장 활발히 이뤄지는 곳은 복원·보존 분야다. 미술품 복원이나 보존 연구자들의 궁극적인 목표는 미술 작품이나 문화재를 손상시키지 않고 원재료와 작품을 분석한 뒤 손상된 부분을 수리, 복원함으로써 더이상 손상이 진행되지 않도록 하는 데 있다. 지난해 초 멕시코 미초아칸대 복원팀은 1초에 1조회를 진동하는 고주파인 ‘테라헤르츠’파를 이용해 18세기에 지어진 이 지역 성당의 제단화가 1850년대에 처음 그린 그림과 완전히 다르다는 사실을 밝혀내 화제가 된 바 있다. 복원팀은 테라헤르츠파로 분석한 결과, 성당 제단화가 1차례의 보강 처리 후 세 차례나 덧칠됐다는 것을 규명했다. 이에 앞서 2013년 미국 로체스터대 연구팀도 테라헤르츠파를 이용해 프랑스 루브르 박물관에 있는 로마시대 프레스코화가 여러 번 덧칠되는 과정에서 원래 그림과 다르게 변형됐다는 것을 찾아냈다. 엑스선보다 투과력이 좋고 인체에 무해해 국제공항 검색대에서 많이 활용되는 테라헤르츠파는 최근 들어 이처럼 원형 훼손이 심한 미술품과 문화재 복원에 활발하게 이용되고 있다. 미술 작품이나 문화재를 손상하지 않으면서 성질을 파악하는 데 가장 선호되는 과학은 ‘라만 분광법’이다. 라만 분광법은 1930년 빛의 산란 연구로 노벨 물리학상을 받은 찬드라세카라 라만이 발견한 분석 기법으로, 빛이 분자를 만나면 종류에 따라 고유한 파장이 나타나는 원리를 이용한 것이다. 이를 이용하면 원료 성분을 분자 단위로 분석해 낼 수 있다. 한 과학계 인사는 “최근 과학기술 분야가 점점 전문화, 세분화돼 새로운 기술을 창조하기가 더욱 어려워지고 있다”며 “미술 분야에서 새로운 기법을 만들어 내기 위해 과학기술을 활용하는 것처럼 과학기술 역시 예술적 감성을 바탕으로 창조성에 대한 돌파구를 찾을 수 있을 것”이라고 말했다. 유용하 기자 edmondy@seoul.co.kr
  • [아하! 우주] 중력파 발견…인간과 과학에 무슨 의미일까?

    [아하! 우주] 중력파 발견…인간과 과학에 무슨 의미일까?

    지난 2월 11일 최초로 중력파 검출에 성공했다는 뉴스는 지구촌 사람들을 환호하게 했다. 알베르트 아인슈타인이 일반상대성 이론에서 시공간의 주름인 중력파가 있을 거라고 예언한 지 꼭 100년 만에 중력파를 발견하게 된 이 희한한 우연을 우리는 어떻게 생각해야 할까? 왜 그처럼 환호했던 것일까? 그리고 이 난해한 파동을 발견한 LIGO는 이제 무슨 일을 하게 되는 걸까?​ 이번에 검출된 중력파는 두 개의 블랙홀이 서로의 둘레를 돌다가 마침내 충돌, 합병했을 때 발생된 것이다. 이 중력파를 잡은 것은 미국 워싱턴주와 루이지애나주에 설치된 레이저 간섭계 중력파 관측소(LIGO)로서, 지난해 9월 14일이었다. ​무엇보다 먼저 놀라운 것은 블랙홀 충돌이라는 사건이었다. 사실 과학자들은 블랙홀이 충돌하여 더 큰 블랙홀을 만들어낼 것인가에 대해서도 확신을 하지 못하던 터였다. 그런데 이제 그 물증을 확보하게 된 셈이다. 그리고 100년 전 아인슈타인이 예언했던 중력파 존재를 레이저 간섭계로 최초로 확인했다는 기쁨이 무엇보다 큰 것이다. 중력파 발견, 어떤 의미가 있는가?중력파 검출이 인류에게 있어 어떤 의미를 갖는 걸일까? 한마디로, 기념비적인 의미를 갖는다고 할 수 있다. 왜냐면, 인류가 우주를 들여다보는 전혀 다른 창을 마련한 셈이라고 과학자들은 말한다. 거대 질량의 천체들이 우주공간에서 가속 또는 감속될 때 발생시키는 중력파를 직접적으로 검출할 수 있는 능력은 귀머거리가 갑자기 소리를 들을 수 있게 된 것에 비유할 수 있다. 전혀 새로운 정보 영역이 인간의 지각 범위 안으로 편입된 것이다. "그것은 마치 갈릴레오가 처음 망원경으로 우주를 들여다본 것과 같다"고 LIGO 연구원 바실리키(비키) 칼로게라 노스웨스트 대학 천체물리학과 교수가 스페이스닷컴에 밝혔다. "우리는 말하자면 우주로부터 오는 정보를 보고 듣는 새로운 눈과 귀를 얻게 된 것입니다. 이전에는 이런 기술이 전혀 개발되지 않았죠." LIGO 책임 연구원인 데이비드 라이체 캘리포니아 공대(칼텍) 교수는 워싱턴 D.C.에서 열린 기자회견에서 "우리는 지금까지 중력파에 관한 한 귀머거리였다"면서 "앞으로의 과제는 더 많은 중력파를 잡아 우리가 기대했던 결과를 얻어내는 것이며 이전에는 결코 알 수 없었던 사실들을 알 수 있게 될 것"이라고 기대감을 나타냈다. 중력파를 검출할 수 있게 됨으로써 인류는 우주를 인식할 수 있는 또 다른 감각기관을 갖추게 된 것이다. LIGO는 블랙홀들의 충돌이나 초신성 폭발 같은 격렬한 우주적 사건에서 발생하는 중력파를 검출할 수 있는 대단히 민감한 장비이다. 중력파 관측소는 이러한 천체나 사건들이 일어나는 장소를 광학 망원경보다 먼저 파악할 수 있으며, 어떤 경우에는 그 같은 우주적 사건을 발견하고 연구할 수 있는 유일한 방법이 바로 중력파 관측이라 할 수 있다. 예컨대 이번에 발견된 블랙홀 충돌은 가시광선으로는 결코 발견할 수 없는 사건이다. 왜냐하면 블랙홀이란 이름 그대로 빛을 내지 않는 물체이기 때문이다. 이럴 경우에는 오로지 중력파로만 그 존재나 사건을 확일할 수 있을 뿐이다. 그러나 광학 망원경으로 볼 수 있는 블랙홀들이 더러는 있다. 블랙홀이 주변의 무섭게 빨아들이는 물질이 복사를 내는 경우가 있기 때문이다. 하지만 과학자들은 아직까지 복사를 내면서 합병하는 블랙홀을 관측한 사례는 없다. 이번에 LIGO가 발견한 블랙홀들은 각각 태양질량의 29배, 36배였다. 라이체 박사는 앞으로도 LIGO의 민감도 개선작업은 계속 이루어질 것이라고 밝히면서 더 먼 거리에 있는 태양질량의 100배, 200배, 또는 500배 이상의 블랙홀들도 포착할 수 있을 거라고 전망했다. "이제 우리는 우주의 창을 활짝 열어젖힌 셈이며, 멋진 발견들이 이루어질 것이다." 우주를 들여보는 새로운 창​ 각기 다른 빛의 파장을 이용한 관측 연구는 우주의 새로운 정보를 알려줄 것이라는 사실을 과학자들은 일찍부터 알고 있었다. 지난 몇 세기 동안 천문학자들은 오로지 가시광선으로 보는 광학 망원경에 의존해 우주를 들여다볼 수밖에 없었다. 비교적 최근에 이르러서야 연구자들은 X-선과 라디오파, 자외선과 감마선 등을 이용한 연구를 시작했을 따름이다. 과학자들은 이렇게 우주를 들여다보는 창들을 차례대로 확장해온 것이다. 중력파의 발견은 이처럼 확장 일로를 걸어온 우주의 창에 전혀 새로운 신기원을 연 셈이다. "만약 우리은하나 이웃 은하 안에서 초신성이 터지는 행운을 잡을 수 있다면 초신성 내부에서 어떤 다이내믹한 일들이 일어나고 있는가를 손바닥 들여다보듯이 볼 수 있을 것"이라고 LIGO의 공동 설립자인 MIT의 라이너 바이스 박사가 말했다. 빛은 성간 먼지나 가스에 의해 차단되는 수가 있지만, 중력파는 그 무엇으로도 차단할 수 없는 것이기 때문이다. ​과학자들이 이 중력파로 가장 연구하고 싶어하는 대상 중 하나는 상상을 초월할 정도로 밀도가 높은 중성자별이다. 다 타고 남은 별의 시체라 할 수 있는 이 중성자별은 별 전체를 하나의 거대한 원자핵으로 볼 수 있는 초고밀도의 존재로, 차숟갈 하나만큼의 질량이 무려 천만 톤이나 된다. 이 같은 극한의 환경 속에서 일반 물질이 어떻게 될 것인지, 과학자들은 거의 아는 것이 없다. 그러나 중력파는 중성자별의 정보를 아무런 왜곡 없이 알려줄 것으로 과학자들은 기대하고 있다. 중력파 발견이 우리 생활에 미치는 영향 중력파의 존재는 딱 100년 전인 1916년에 출판된 아인슈타인의 일반상대성 이론에서 최초로 예언되었다. 이 유명한 이론은 그후 모든 종류의 과학적 검증을 통과했다. 그러나 중력파 가설만은 미확인의 영역에 계속 남아 있었다. 극한 상황에서 발생하는 이 중력파를 현실세계에서는 검증해볼 방법이 없었기 때문이다. 엄청난 질량의 천체들이 충돌하거나 폭발하는 경우에서만 시공간의 주름인 중력파가 발생할 거라고 아인슈타인이 예언했던 것이다. "지금까지 우리는 아주 고요한 상태의 주름진 시공간만을 보아왔다. 그것은 마치 바람 없는 날 잔잔한 바다를 보는 것과 같은 상황이다." 영화 '인터스텔라'의 자문을 맡은 물리학자이자 주름진 시공간 전문가인 칼텍의 킵 손이 설명한다. "하지만 태풍이 불면 바다는 집채만한 파도를 만듭니다. 이번에 중력파를 검출한 것은 블랙홀 충돌이라는 우주의 태풍이 시공간에서 일으킨 파도를 본 것이나 같습니다. 이 중력파 검출은 아인슈타인의 중력이론을 멋지고 강력하게 입증해주었습니다. 아인슈타인은 옳았던 것이죠." ​그러나 이번 중력파 발견으로 일반상대성 이론에 대한 연구가 완결되었다고 보기는 어렵다. 여전히 질문은 남아 있다. 광자가 전자기파의 에너지를 전하는 것처럼 중력을 매개한다고 알려진 중력자의 존재는 여전히 발견되지 못하고 있다. 그래서 과학자들은 블랙홀 내부를 주시하고 있다. 그 안에서 일어나는 어떤 사건들이 이러한 의문에 답을 줄 수 있지 않을까 기대하고 있는 것이다. 그러나 LIGO와 그 연계된 장비들이 앞으로 더 많은 데이터들을 수집할 때 이러한 연구도 진척될 것으로 보이는만큼 오랜 시간이 걸리는 작업이 될 것이다. 중력파 발견이 과학계를 넘어 우리의 일상생활에 어떤 영향을 미치게 될까? 이에 대해서는 예단하기 어렵다. 100년 전 아인슈타인이 일반 상대성 이론을 확립하고, 중력이 시간에 미치는 영향을 얘기했을 때, 그것이 우리 생활에 어떤 영향을 미칠 것인가에 대해 진정으로 이해한 사람은 아무도 없었다. 그러나 그의 중력이론은 오늘날 우리에게 필수품이 되다시피한 내비게이션에 적용되고 있다. 내비게이션으로 어떤 곳의 위치를 알기 위해서는 GPS 인공위성의 시계와 지구에 있는 시계가 정확히 일치해야 한다. 특수상대성 이론에 의하면, 빠르게 움직이는 물체에게 시간은 느리게 가며, 일반상대성 이론에 의해 중력이 강한 곳에서도 시간은 느리게 간다. 위성은 지표면 위 2만km 높이에서 시속 1만 4000km 속도로 지구 주위를 돈다. 계산에 의하면 위성에서는 속도에 의해 매일 7ms(밀리초, 1ms=1,000분의 1초)씩 시간이 느려지는 반면, 약한 중력에 의해 45ms 더 빨라진다. 따라서 특수상대성 이론과 일반상대성 이론의 두 가지 효과를 같이 고려하면, 결국 위성의 원자시계는 지표면보다 38ms 빨리 가게 된다. 즉 한 달에 약 1초 이상의 오차가 생긴다. 이것을 시속 100km 속도로 움직이는 자동차에 비유한다면 원래 위치에서 약 30m 거리를 벗어나게 된다. 이 시간차를 보정해주지 않으면 내비게이션은 무용지물이 된다. 아인슈타인의 상대성 이론이 당신과 얼마나 밀접한 관련을 맺고 있는가는 이로써 알 수 있을 것이다. 물리학자 킵 손은 중력파 발견의 의미를 다음과 같이 조심스레 평가한다. "우리가 르네상스 시대를 회상하며, 그 시대 사람들이 우리에게 어떤 귀중한 것을 남겨주었나 자문해본다면, 그것은 위대한 미술과 건축, 그리고 음악이었다고 말할 수 있을 것입니다. 이와 같이 우리의 후손이 우리 시대를 회상하며 위대한 유산이 무엇인가 생각할 때, 우주의 근본 법칙과 그 법칙이 작동하는 방법, 그리고 우주에 대한 끝없는 탐구정신이라고 평가할 것이라고 믿습니다." "중력파 발견과 LIGO의 업적은 어떤 과학적 발견에 뒤지지 않는 문화적 선물입니다. 미래 세대에 남기는 우리의 유산에 대해 우리는 자부심을 느껴도 좋을 것입니다." 이광식 통신원 joand999@naver.com
  • [아하! 우주] 허블의 100배…우주 비밀 밝힐 ‘스파이 망원경’

    [아하! 우주] 허블의 100배…우주 비밀 밝힐 ‘스파이 망원경’

    지난 11일 역사상 최초로 중력파 검출에 성공해 우주과학계 전체가 흥분을 감추지 못한 가운데, 우주의 더 많은 비밀을 밝히는데 도움을 줄 새로운 우주관측기구에 대한 관심이 더욱 높아지고 있다. 미국항공우주국(이하 NASA)이 개발한 WFIRST(Wide Field Infrared Survey Telescope)는 NASA와 유럽우주국(ESA)이 개발한 이제까지 최고 성능을 자랑해온 허블 망원경의 100배에 달하는 크기를 자랑한다. 기존의 허블망원경이 태양계 행성과 별 등을 관측하는데 주력했다면, 이보다 훨씬 뛰어난 성능을 자랑할 새 망원경은 우주의 암흑에너지(우주를 팽창시키는 역할을 하는 음의 우주에너지)까지 포착하는데 도움을 줄 것으로 예측된다. 학계에서는 이 망원경이 우주관측연구 역사의 새로운 장을 열 것으로 기대를 모았다. 허블망원경에 비해 더욱 높아진 해상도와 화각 덕분에 지금까지 보지 못했던 우주의 새로운 모습을 관측할 수 있기 때문이다. 지금까지 보지 못했던 우주의 새로운 모습을 보여줄 것으로 예상되면서 일명 '스파이 망원경' 이라는 별칭도 생겼다. NASA는 현지시간으로 26일, WFIRST 관련 계획을 정식 발표하면서 “이 망원경은 우주를 향한 인류의 눈을 뜨게 해주는 잠재적인 능력일 가지고 있다”면서 “WRIRST는 NASA의 차세대 천체물리학 관측망원경이 될 것”이라고 기대했다. NASA는 WFIRST 망원경과 더불어 코로나그래프(Coronagraph Instrument) 라는 기기를 이용해 외계행성의 대기 성분을 자세하게 파악하는데 주력할 예정이다. 코로나그래프는 일종의 필터 역할을 통해 항성이 발하는 빛을 차단하고 그 주위에서 희미한 빛을 띠는 행성을 찾아내는데에도 도움을 준다. 우주의 전반적인 형태와 위치, 은하계의 거리 등을 관측할 WFIRST 망원경은 오는 2024년 ‘출격’할 예정이다. 이에 앞서 2018년에는 현재 개발 중인 제임스웹 우주 망원경(James Webb Space Telescope)이 먼저 우주로 떠난다. ESA의 아리안 5호에 실려 우주로 가는 제임스웹 망원경은 지구에서 150만㎞ 떨어진 지점에서 우주관측에 나설 예정이다. 전문가들은 출격을 앞둔 초고성능 망원경들의 면면이 공개되면서, 심우주 연구개발이 한층 더 빨라질 것으로 기대했다. 송혜민 기자 huimin0217@seoul.co.kr
  • 중력파 발견, 인간과 과학에 무슨 의미인가

    중력파 발견, 인간과 과학에 무슨 의미인가

    지난 2월 11일 최초로 중력파 검출에 성공했다는 뉴스는 지구촌 사람들을 환호하게 했다. 알베르트 아인슈타인이 일반상대성 이론에서 시공간의 주름인 중력파가 있을 거라고 예언한 지 꼭 100년 만에 중력파를 발견하게 된 이 희한한 우연을 우리는 어떻게 생각해야 할까? ​어떤 과학적 발견도 이번처럼 떠들썩한 환호를 받은 적이 없었다. 대체 사람들은 왜 그처럼 환호했던 것일까? 그리고 이 난해한 파동을 발견한 LIGO는 이제 무슨 일을 하게 되는 걸까?​ 이번에 검출된 중력파는 두 개의 블랙홀이 서로의 둘레를 돌다가 마침내 충돌, 합병했을 때 발생된 것이다. 이 중력파를 잡은 것은 미국 워싱턴주와 루이지애나주에 설치된 레이저 간섭계 중력파 관측소(LIGO)로서, 지난해 9월 14일이었다. ​무엇보다 먼저 놀라운 것은 블랙홀 충돌이라는 사건이었다. 사실 과학자들은 블랙홀이 충돌하여 더 큰 블랙홀을 만들어낼 것인가에 대해서도 확신을 하지 못하던 터였다. 그런데 이제 그 물증을 확보하게 된 셈이다. 그리고 100년 전 아인슈타인이 예언했던 중력파 존재를 레이저 간섭계로 최초로 확인했다는 기쁨이 무엇보다 큰 것이다. 중력파 발견, 어떤 의미가 있는가?중력파 검출이 인류에게 있어 어떤 의미를 갖는 걸일까? 한마디로, 기념비적인 의미를 갖는다고 할 수 있다. 왜냐면, 인류가 우주를 들여다보는 전혀 다른 창을 마련한 셈이라고 과학자들은 말한다. 거대 질량의 천체들이 우주공간에서 가속 또는 감속될 때 발생시키는 중력파를 직접적으로 검출할 수 있는 능력은 귀머거리가 갑자기 소리를 들을 수 있게 된 것에 비유할 수 있다. 전혀 새로운 정보 영역이 인간의 지각 범위 안으로 편입된 것이다. "그것은 마치 갈릴레오가 처음 망원경으로 우주를 들여다본 것과 같다"고 LIGO 연구원 바실리키(비키) 칼로게라 노스웨스트 대학 천체물리학과 교수가 스페이스닷컴에 밝혔다. "우리는 말하자면 우주로부터 오는 정보를 보고 듣는 새로운 눈과 귀를 얻게 된 것입니다. 이전에는 이런 기술이 전혀 개발되지 않았죠." LIGO 책임 연구원인 데이비드 라이체 캘리포니아 공대(칼텍) 교수는 워싱턴 D.C.에서 열린 기자회견에서 "우리는 지금까지 중력파에 관한 한 귀머거리였다"면서 "앞으로의 과제는 더 많은 중력파를 잡아 우리가 기대했던 결과를 얻어내는 것이며 이전에는 결코 알 수 없었던 사실들을 알 수 있게 될 것"이라고 기대감을 나타냈다. 중력파를 검출할 수 있게 됨으로써 인류는 우주를 인식할 수 있는 또 다른 감각기관을 갖추게 된 것이다. LIGO는 블랙홀들의 충돌이나 초신성 폭발 같은 격렬한 우주적 사건에서 발생하는 중력파를 검출할 수 있는 대단히 민감한 장비이다. 중력파 관측소는 이러한 천체나 사건들이 일어나는 장소를 광학 망원경보다 먼저 파악할 수 있으며, 어떤 경우에는 그 같은 우주적 사건을 발견하고 연구할 수 있는 유일한 방법이 바로 중력파 관측이라 할 수 있다. 예컨대 이번에 발견된 블랙홀 충돌은 가시광선으로는 결코 발견할 수 없는 사건이다. 왜냐하면 블랙홀이란 이름 그대로 빛을 내지 않는 물체이기 때문이다. 이럴 경우에는 오로지 중력파로만 그 존재나 사건을 확일할 수 있을 뿐이다. 그러나 광학 망원경으로 볼 수 있는 블랙홀들이 더러는 있다. 블랙홀이 주변의 무섭게 빨아들이는 물질이 복사를 내는 경우가 있기 때문이다. 하지만 과학자들은 아직까지 복사를 내면서 합병하는 블랙홀을 관측한 사례는 없다. 이번에 LIGO가 발견한 블랙홀들은 각각 태양질량의 29배, 36배였다. 라이체 박사는 앞으로도 LIGO의 민감도 개선작업은 계속 이루어질 것이라고 밝히면서 더 먼 거리에 있는 태양질량의 100배, 200배, 또는 500배 이상의 블랙홀들도 포착할 수 있을 거라고 전망했다. "이제 우리는 우주의 창을 활짝 열어젖힌 셈이며, 멋진 발견들이 이루어질 것이다." 우주를 들여보는 새로운 창​ 각기 다른 빛의 파장을 이용한 관측 연구는 우주의 새로운 정보를 알려줄 것이라는 사실을 과학자들은 일찍부터 알고 있었다. 지난 몇 세기 동안 천문학자들은 오로지 가시광선으로 보는 광학 망원경에 의존해 우주를 들여다볼 수밖에 없었다. 비교적 최근에 이르러서야 연구자들은 X-선과 라디오파, 자외선과 감마선 등을 이용한 연구를 시작했을 따름이다. 과학자들은 이렇게 우주를 들여다보는 창들을 차례대로 확장해온 것이다. 중력파의 발견은 이처럼 확장 일로를 걸어온 우주의 창에 전혀 새로운 신기원을 연 셈이다. "만약 우리은하나 이웃 은하 안에서 초신성이 터지는 행운을 잡을 수 있다면 초신성 내부에서 어떤 다이내믹한 일들이 일어나고 있는가를 손바닥 들여다보듯이 볼 수 있을 것"이라고 LIGO의 공동 설립자인 MIT의 라이너 바이스 박사가 말했다. 빛은 성간 먼지나 가스에 의해 차단되는 수가 있지만, 중력파는 그 무엇으로도 차단할 수 없는 것이기 때문이다. ​과학자들이 이 중력파로 가장 연구하고 싶어하는 대상 중 하나는 상상을 초월할 정도로 밀도가 높은 중성자별이다. 다 타고 남은 별의 시체라 할 수 있는 이 중성자별은 별 전체를 하나의 거대한 원자핵으로 볼 수 있는 초고밀도의 존재로, 차숟갈 하나만큼의 질량이 무려 천만 톤이나 된다. 이 같은 극한의 환경 속에서 일반 물질이 어떻게 될 것인지, 과학자들은 거의 아는 것이 없다. 그러나 중력파는 중성자별의 정보를 아무런 왜곡 없이 알려줄 것으로 과학자들은 기대하고 있다. ​ 중력파 발견이 우리 생활에 미치는 영향 중력파의 존재는 딱 100년 전인 1916년에 출판된 아인슈타인의 일반상대성 이론에서 최초로 예언되었다. 이 유명한 이론은 그후 모든 종류의 과학적 검증을 통과했다. 그러나 중력파 가설만은 미확인의 영역에 계속 남아 있었다. 극한 상황에서 발생하는 이 중력파를 현실세계에서는 검증해볼 방법이 없었기 때문이다. 엄청난 질량의 천체들이 충돌하거나 폭발하는 경우에서만 시공간의 주름인 중력파가 발생할 거라고 아인슈타인이 예언했던 것이다. "지금까지 우리는 아주 고요한 상태의 주름진 시공간만을 보아왔다. 그것은 마치 바람 없는 날 잔잔한 바다를 보는 것과 같은 상황이다." 영화 '인터스텔라'의 자문을 맡은 물리학자이자 주름진 시공간 전문가인 칼텍의 킵 손이 설명한다. "하지만 태풍이 불면 바다는 집채만한 파도를 만듭니다. 이번에 중력파를 검출한 것은 블랙홀 충돌이라는 우주의 태풍이 시공간에서 일으킨 파도를 본 것이나 같습니다. 이 중력파 검출은 아인슈타인의 중력이론을 멋지고 강력하게 입증해주었습니다. 아인슈타인은 옳았던 것이죠." ​그러나 이번 중력파 발견으로 일반상대성 이론에 대한 연구가 완결되었다고 보기는 어렵다. 여전히 질문은 남아 있다. 광자가 전자기파의 에너지를 전하는 것처럼 중력을 매개한다고 알려진 중력자의 존재는 여전히 발견되지 못하고 있다. 그래서 과학자들은 블랙홀 내부를 주시하고 있다. 그 안에서 일어나는 어떤 사건들이 이러한 의문에 답을 줄 수 있지 않을까 기대하고 있는 것이다. 그러나 LIGO와 그 연계된 장비들이 앞으로 더 많은 데이터들을 수집할 때 이러한 연구도 진척될 것으로 보이는만큼 오랜 시간이 걸리는 작업이 될 것이다. 중력파 발견이 과학계를 넘어 우리의 일상생활에 어떤 영향을 미치게 될까? 이에 대해서는 예단하기 어렵다. 100년 전 아인슈타인이 일반 상대성 이론을 확립하고, 중력이 시간에 미치는 영향을 얘기했을 때, 그것이 우리 생활에 어떤 영향을 미칠 것인가에 대해 진정으로 이해한 사람은 아무도 없었다. 그러나 그의 중력이론은 오늘날 우리에게 필수품이 되다시피한 내비게이션에 적용되고 있다. 내비게이션으로 어떤 곳의 위치를 알기 위해서는 GPS 인공위성의 시계와 지구에 있는 시계가 정확히 일치해야 한다. 특수상대성 이론에 의하면, 빠르게 움직이는 물체에게 시간은 느리게 가며, 일반상대성 이론에 의해 중력이 강한 곳에서도 시간은 느리게 간다. 위성은 지표면 위 2만km 높이에서 시속 1만 4000km 속도로 지구 주위를 돈다. 계산에 의하면 위성에서는 속도에 의해 매일 7ms(밀리초, 1ms=1,000분의 1초)씩 시간이 느려지는 반면, 약한 중력에 의해 45ms 더 빨라진다. 따라서 특수상대성 이론과 일반상대성 이론의 두 가지 효과를 같이 고려하면, 결국 위성의 원자시계는 지표면보다 38ms 빨리 가게 된다. 즉 한 달에 약 1초 이상의 오차가 생긴다. 이것을 시속 100km 속도로 움직이는 자동차에 비유한다면 원래 위치에서 약 30m 거리를 벗어나게 된다. 이 시간차를 보정해주지 않으면 내비게이션은 무용지물이 된다. 아인슈타인의 상대성 이론이 당신과 얼마나 밀접한 관련을 맺고 있는가는 이로써 알 수 있을 것이다. 물리학자 킵 손은 중력파 발견의 의미를 다음과 같이 조심스레 평가한다. "우리가 르네상스 시대를 회상하며, 그 시대 사람들이 우리에게 어떤 귀중한 것을 남겨주었나 자문해본다면, 그것은 위대한 미술과 건축, 그리고 음악이었다고 말할 수 있을 것입니다. 이와 같이 우리의 후손이 우리 시대를 회상하며 위대한 유산이 무엇인가 생각할 때, 우주의 근본 법칙과 그 법칙이 작동하는 방법, 그리고 우주에 대한 끝없는 탐구정신이라고 평가할 것이라고 믿습니다." "중력파 발견과 LIGO의 업적은 어떤 과학적 발견에 뒤지지 않는 문화적 선물입니다. 미래 세대에 남기는 우리의 유산에 대해 우리는 자부심을 느껴도 좋을 것입니다." 이광식 통신원 joand999@naver.com
  • [세상을 밝히는 사람들] “답답한 숨·불편한 몸…그래도 꿈”

    [세상을 밝히는 사람들] “답답한 숨·불편한 몸…그래도 꿈”

    ‘호킹과 같은 병’ 두 돌 지나 알아 “책 한장 넘기는 것도 힘들지만 대학 못 간다 생각한 적 없어 내 병 생명공학으로 더 공부할 것” “제가 앓고 있는 희귀병인 ‘척수성 근위축증’에 대해 어릴 적부터 무척 궁금했어요. 대학에서 생명과학을 공부하면 조금 더 알 수 있게 되지 않을까요.” 16일 오후 3시 서울 연세대 강남세브란스병원에서 만난 김명지(19)양은 “병 때문에 한 번도 두 발로 서 보지 못했고 호흡장애도 있지만 희귀병 때문에 대학에 못 간다고 생각해 본 적은 없다”며 “병은 단지 불편할 뿐 불가능을 뜻하는 것은 아니다”라고 말했다. 김양은 오는 3월 연세대 원주캠퍼스 생명과학기술학부에 입학한다. 척수성 근위축증은 근육 손상이 진행되면서 움직이지 못하게 되는 희귀병이다. 나중에는 숨을 쉬는 것도 힘들어진다. 세계적 물리학자인 스티븐 호킹이 앓아 알려졌다. 이날 병원에서는 ‘한국의 호킹들, 축하합니다’라는 행사가 열렸다. 희귀병으로 호흡장애를 앓는 고등학생, 대학생 20명이 참석했고 이 중 김양을 포함해 5명은 대학 입학을 기다리고 있다. “첫돌이 되기 전 선반을 잡고 일어서다 엉덩방아를 찧었는데 일어나지 않자 가족들이 처음에는 겁이 많다고 생각했대요. 하지만 두 돌이 지나도 못 걸으니 이상하게 생각한 거죠.” 김양은 곧 조직검사를 받았고 척수성 근위축증이라는 날벼락 같은 진단을 받았다. 의사는 “2년도 못 살 것”이라고 했다. 척수성 근위축증은 치료약이 없다. 꾸준한 재활치료로 근육의 퇴화를 늦추는 것밖에는 방도가 없다. 초등학교 5학년 때는 숨 쉬는 것도 힘들어져 병원에서 호흡재활 치료까지 했다. “끔찍하게 힘든 상황도 있었죠. 하지만 부모님이 전폭적으로 믿어 주셨고 언제나 재활을 함께해 주셨어요.” 김양은 5살 때 장애인 유치원을 다녔지만 초등학교부터 일반학교로 진학했다. 처음에는 근육의 힘이 약하니 책 한 장을 넘기는 것도, 필기를 하는 것도 힘들었다. 쉬는 시간은 오롯이 친구의 노트를 베끼는 데 사용했다. 고등학교 3학년 때는 눕지 못하고 하루 12시간씩 휠체어에 앉아 있다 보니 허리가 아프고 엉덩이가 짓눌렸다. 그러나 밝은 성격으로 최선을 다하는 김양의 모습에 많은 친구가 도와주었다. 어머니 김경희(45)씨는 “딸의 친구들에게 딸의 병에 대해 자세히 설명하니까 많이 도와줘 고마울 따름”이라며 “지금은 일어서는 것만 못할 뿐 친구들처럼 말하고 활동하는 데 큰 어려움은 없다”고 밝혔다. 김양은 대학에서 자신의 병에 대해 연구한 후 화장품 연구원이 되고 싶다고 했다. “모든 사람들이 화장품을 안심하고 사용할 수 있도록 건강한 화장품을 만들고 싶어요. 그리고 저 때문에 고생한 가족에게도 꼭 보답하고 싶어요.” 이성원 기자 lsw1469@seoul.co.kr
  • “인공지능, 30년 내 일자리 50% 뺏는다… 로봇과의 공생 배워야”

    “인공지능, 30년 내 일자리 50% 뺏는다… 로봇과의 공생 배워야”

    택시기사·윤락업 종사도 대체…운전 25년 내 완전 자동화 전망 인공지능(AI)의 발달로 로봇이 인간의 일자리를 대체하면서 향후 30년 안에 두 명 가운데 한 명은 실업자가 된다는 암울한 전망이 나왔다. 세계적 물리학자 스티븐 호킹과 전기차 제조업체 테슬라의 일론 머스크 회장이 인공지능을 인류 최대의 위협이라고 한 경고가 현실화되고 있다. 모셰 바르디 미국 라이스대 컴퓨터공학 교수는 지난 13일(현지시간) 워싱턴DC에서 열린 미국과학진흥협회(AAAS) 연례회의에서 “기계가 모든 분야에서 인간을 능가하는 시대가 다가오고 있다”며 30년 후 실업률이 50%까지 치솟을 것이라고 예측했다. 바르디 교수에 따르면 미국 산업 현장에 자동화가 확산되면서 노동생산성과 국민총생산(GDP)은 크게 늘었으나 일자리 수는 1980년대 정점을 찍은 후 현재 1950년대 수준을 밑돌고 있다. 바르디 교수는 “지금까지 미국에 25만대의 산업 로봇이 현장에 투입됐으며 로봇 대수는 매년 두 자릿수의 증가율을 보이고 있다”며 자동화에 따른 일자리 감소 추세가 가속화될 것이라고 전망했다. 그는 “윤락업에 종사하는 로봇도 나올 것”이라며 “어떠한 일자리도 인공지능으로부터 안전하지 않다”고 말했다. 옥스퍼드대 컴퓨터공학 교수인 칼 프레이 역시 2013년 발표한 논문에서 미국 근로자의 47%가 자동화될 확률이 70%가 넘는 직업에 종사한다고 분석했다. 프레이 교수가 분석한 702개의 직업 중 레크리에이션 치료사의 자동화 확률은 0.28%로 인공지능과 로봇이 대체하기 가장 어려운 직업으로 나타났다. 반면 텔레마케터, 재봉사, 개인보험업자 등의 직업이 인공지능과 로봇의 손으로 넘어갈 확률은 99%에 이른다. 현재 개발된 기술로도 충분히 다양한 직업들을 자동화할 수 있다는 연구 결과도 나왔다. 지난해 컨설팅업체 매킨지는 현재의 인공지능 기술이 최고경영자(CEO) 업무의 20%, 문서관리원 업무의 80%를 충분히 수행할 수 있으며, 평균적으로 전체 근로자 업무의 45%를 너끈히 처리할 수 있다고 분석했다. 바르디 교수는 운전도 25년 안에 완전히 자동화될 것이라고 전망했다. 그는 인공지능이 운전하는 자율주행차가 인간이 운전하는 차량에 비해 사고 발생 확률이 10% 미만이라고 분석했다. 바르디 교수는 “자율주행차가 수많은 생명을 살리고 부상을 막을 수 있다면, 운전 자동화에 반대하기는 도덕적으로 어려울 것”이라고 주장했다. 이날 회의에 참석한 바트 셀먼 코넬대 컴퓨터공학 교수는 “인공지능과 로봇이 일상화될수록 인간은 그들과 공생하는 법을 배워야 한다”며 “인간은 그들을 신뢰하고 그들과 협력해야 한다”고 말했다. 박기석 기자 kisukpark@seoul.co.kr
  • 로켓과 미사일은 동전의 양면

    로켓과 미사일은 동전의 양면

    1957년 소련 ICBM·궤도위성 발사 급해진 美, ICBM 기술 개량해 달 착륙액체 추진체 로켓, 고체보다 구조 복잡 전기차 생산업체 테슬라의 창업자 일론 머스크가 이끄는 민간 우주기업 ‘스페이스X’가 지난해 12월 말 우주 로켓 ‘팰컨9’을 발사한 뒤 1단 추진 로켓을 다시 지상에 착륙시키는 데 성공했다. 세계 최대 온라인 상거래업체 아마존의 창업자 제프 베저스가 세운 우주기업 ‘블루 오리진’도 지난해 11월 로켓 ‘뉴 셰퍼드’를 100㎞ 상공까지 쏘아 올렸다가 발사지점으로 되돌아오게 하는 데 성공했다. 세계적인 과학저널 ‘사이언스’는 1월호에서 로켓 재활용 연구를 ‘2016년 주목받을 과학 이슈들’의 첫머리에 올렸다. 지난 7일에는 북한이 장거리 미사일을 발사해 전 세계를 놀라게 했다. 북한의 주장대로 위성 ‘광명성 4호’를 궤도에 올리기 위한 우주 로켓이었는지 대륙간탄도미사일(ICBM) 기술을 시험하기 위한 것인지에 대해 논란이 일었다. 인류 최초의 로켓은 1232년 발사된 중국의 ‘비화창’(飛火槍)이지만, 현대적 로켓의 시작점은 미국 클라크대의 물리학 교수 로버트 고다드(1882~1945년)가 액체 연료 로켓을 발사한 1926년으로 보는 것이 일반적이다. 로켓 기술은 별로 관심을 받지 못하다가 2차 세계대전 중에 비약적인 발전을 했다. 무기로서 활용 가능성에 주목하던 독일 정부는 젊은 공학자 베르너 폰 브라운(1912~1977년)에게 로켓을 미사일로 연구하도록 지시했다. 이후 브라운은 고도 110㎞까지 올라갔다가 목표를 타격하는 탄도 미사일 ‘V-2’를 개발하는 데 성공했다. 냉전이 시작되면서 미국과 소련은 핵무기를 싣고 상대국을 타격할 수 있는 장거리 미사일 개발을 위한 로켓 기술 연구에 본격적으로 돌입했다. 그 결과 1957년 8월 소련이 먼저 ‘R-7’이라는 ICBM을 처음으로 시험 발사했고, 2개월 뒤인 10월에는 R-7을 이용해 인류 최초의 궤도위성 ‘스푸트니크 1호’를 쏘아 올리는 데 성공했다. 미국은 소련의 독주를 따라잡기 위해 즉각 긴급 계획을 수립하고 ICBM 개발과 로켓으로 사람을 달에 착륙시키겠다는 ‘아폴로 프로젝트’를 동시에 가동했다. 아폴로 프로젝트의 핵심인 ‘새턴’ 로켓은 ICBM이었던 ‘아틀라스’, ‘레드스톤’, ‘타이탄’ 등의 로켓 기술을 개량한 것이다. 실제로 1세대 ICBM인 소련의 R-7과 미국의 아틀라스 미사일은 액체 추진제를 사용했기 때문에 발사 준비에 최소 10시간~하루 이상이 걸려 무기로 운용되기에는 한계가 있었다. 이 때문에 미·소 양국은 발사 명령 수십 초 내에 발사가 가능한 고체 추진제나 미사일에 주입한 채 저장이 가능한 상온 액체 추진제를 활용한 2세대 ICBM 개발에 나섰다. 대신 1세대 미사일은 개량을 통해 우주 개발에 활용했다. 많은 항공우주공학 전문가들이 “로켓과 미사일은 동전의 양면과 같다”고 강조하는 이유도 이 때문이다. 로켓은 다른 행성으로의 비행, 지구의 상층 대기에 대한 과학조사, 무기체계 등 다양한 목적으로 이용된다. 인공위성이나 우주 탐사선을 지구 궤도나 달, 수성, 금성, 화성 등으로 보내기 위한 목적을 가진 로켓은 ‘발사체’라고 부르기도 한다. 지구 주위를 도는 인공위성이 되기 위해서는 초속 7.9㎞의 빠른 속도로 지구를 돌아야 하며, 달이나 다른 행성으로 가기 위해서는 초속 11.1㎞ 이상의 속도로 대기권을 벗어날 수 있어야 한다. 로켓은 뉴턴의 제3운동법칙인 ‘작용·반작용의 법칙’을 이용해 연료와 산화제의 화합 및 연소작용으로 발생한 가스를 바깥으로 밀어내면서 위로 솟구쳐 올라가는 위성이나 탐사선이 빠른 속도를 가질 수 있도록 도와주는 역할을 하는 것이다. 이때 로켓을 밀어올리는 힘을 ‘추력’이라고 부른다. 2019년과 2020년 발사 예정인 ‘한국형 발사체’의 1단 엔진은 75t 엔진 4개를 묶어 300t의 추력을 갖고, 2단 엔진은 75t, 3단 엔진은 7t의 추력을 갖는다. 로켓은 사용 목적뿐만 아니라 추진제 종류에 따라 구분하기도 하는데 이를 기준으로 할 때 ‘액체 추진제 로켓’, ‘고체 추진제 로켓’, 액체와 고체를 함께 사용하는 ‘하이브리드 로켓’으로 나눈다. 액체 추진제 로켓은 연료와 산화제를 각각 별개의 공간에 저장해 두었다가 터보 펌프와 가스 압력을 이용해 고압의 연소실에서 연소시킴으로써 고온의 가스를 만든다. 이 고온의 가스를 연소실 아래에 붙어 있는 노즐을 통해 엔진 밖으로 분출함으로써 추력을 얻는다. 고체 추진제 로켓보다 구조가 복잡하고 고도의 제작기술을 필요로 한다. 로켓 안쪽이 연료와 산화제로 구성된 고체 형태의 추진제로 꽉 채워져 있는 고체 추진제 로켓은 로켓 구조가 비교적 간단하고 제작·유지 비용이 싸다는 장점이 있다. 이 때문에 로켓 개발을 막 시작한 나라들에서 많이 활용하고 있으며 주로 ICBM이나 우주 로켓의 추력 보강용 로켓에 쓰인다. 우주 로켓은 최종 속도를 높이기 위해 2~4단까지 다단계로 구성된다. 3단 로켓의 경우 1단과 2단 로켓은 대기권을 벗어나고 원하는 궤도에 올리는 힘을 얻기 위한 것이며, 3단 로켓은 위성이 안정적으로 궤도를 돌 수 있게 만들어주는 것이다. 3단 로켓 바로 윗부분에 로켓 전체의 비행을 유도하는 제어장치가 있고 그 바로 위에 인공위성이 실리게 된다. 유용하 기자 edmondy@seoul.co.kr
  • ​’양자 얽힘’: 아원자 세계의 애틋한 사랑 이야기

    ​’양자 얽힘’: 아원자 세계의 애틋한 사랑 이야기

    아무리 멀리 떨어져 있어도 동시에 반응한다 남녀간이나 혈육 사이의 사랑을 얘기할 때 사람들은 눈에 보이지 않는 신비한 어떤 연결 같은 것을 곧잘 화제에 올리곤 한다. 거리의 멀고 가까움에 상관없이 서로 마음이 통하는 그 무엇 말이다. 누구에게나 그런 경험이 더러 있을 것이다. 그런데 이런 연결이 아원자의 세계에도 존재한다는 것이 양자론자들의 주장이다. 아니, 주장의 수준을 넘어 이미 검증된 사실로 받아들여지고 있다. 이런 비직관적이고 기묘한 양자 세계의 현상을 '양자 얽힘'이라고 한다. 말 그대로 양자끼리 얽혀 있다는 얘기다. 그 기본적인 개념은 한 근원에서 태어난 한 쌍의 입자는 아무리 멀리 떨어져 있다 하더라도, 심지어 수십억 광년 거리로 서로 떨어져 있더라도 얽힌 상태는 풀어지지 않는다는 것이다. 그러니까 한쪽 입자에 어떤 변화가 일어나면 즉각적으로 10억 광년 바깥에 있는 다른 입자에게도 그 변화가 나타난다는 말이다. 이런 섬찟한 현상이 정말 사실일까? 그 양자들 사이의 공간은 없는 것이나 다름없다는 뜻일까? 1964년 물리학자 존 벨은 얽힌 상태의 두 입자가 아무리 멀리 떨어져 있더라도 즉각 서로 반응한다는 가설을 증명하는 데 성공했다. 이것을 벨의 정리라 하는데, 현대 물리학에서 중요하게 다루어지는 개념이다. 그러나 아인슈타인은 이 양자 얽힘에 대해 끝까지 반대하는 입장에 있었다. 왜냐하면 그의 특수상대성 이론에 따르면, 우주에서 빛보다 빠른 것은 없는데, 양자 얽힘은 이 원칙을 무너뜨리는 것이라고 보았기 때문이다. 그래서 그는 양자론자들이 '유령 같은 원격작용'을 주장한다고 비판하며, 그들이 '숨은 변수'를 찾아내지 못해 터무니없는 가설을 세웠다고 주장했다. 지난 반세기에 걸쳐 많은 과학자들이 벨의 정리를 증명하기 위한 실험에 매달렸다. 그러나 실험을 수행할 만한 민감한 장치를 설계하고 만드는 일이 너무나 어려운 나머지 모두 실패하고 말았다. ​그런데 지난해 이변이 일어났다. 3개의 연구팀이 각기 벨의 정리를 증명하는 실험에 도전한 끝에 모두 성공을 거두었던 것이다. 세 실험팀의 결론는 모두 벨의 증리가 옳았고, 아인슈타인이 틀렸다는 것으로 귀결되었다. '양자 얽힘'은 거부할 수 없는 진리로 드러난 것이다. 한 근원에서 태어난 한 쌍의 입자는 서로가 우주 양쪽에 있더라도 한쪽이 변화하면 즉각적으로 다른 쪽에 영향을 미친다! 이들 사이의 공간은 아무런 의미가 없다. 이런 상황을 일컬어 우주의 '비국소성'이라 한다. 어떤 과학자는 부부가 서로 아무리 멀리 떨어져 있더라도 부부인 것처럼 한 쌍의 입자도 그렇다고 설명했다. 세 실험팀 중 하나는 콜로라도 주 볼더에 있는 미국 국립표준기술연구원의 지원을 받은 물리학자 크리스터 섈름이 이끄는 연구진이었다. 샐름과 그의 동료들은 실험에서 극저온으로 냉각시킨 금속 조각을 사용했다. 이 상태의 금속은 초전도체가 되어 전기 저항이 사라진다. 빛알갱이, 즉 광자가 이 금속을 때리면 금속은 짧은 순간 보통의 전도체로 되돌아가는데, 과학자들은 그 다음 어떤 일이 벌어지는가를 주시했다. 그 결과 한 광자를 측정하는 순간 얽힌 상태의 다른 광자가 즉각 영향을 받는다는 사실을 확인했다. '피지컬 리뷰 레터스'에 발표된 실험 결과는 벨의 정리를 강력히 뒷받침해주는 내용이다. "우리 논문을 포함해 지난해 발표된 세 논문은 모두 벨이 옳았다는 것을 보여주었다. 아인슈타인이 말한 '숨은 변수'는 없으며, 얽힌 상태의 두 입자는 아무리 거리가 멀리 떨어져 있더라도 서로 즉각적으로 반응한다는 것을 실험적으로 확인할 수 있었다"고 공동저자인 프란세스코 마실리 NASA 제트추진연구소 연구원이 밝혔다. 이광식 통신원 joand999@naver.com​
  • 중국, 美 ‘류샤오보 광장’ 명칭 변경에 뿔났다

    중국, 美 ‘류샤오보 광장’ 명칭 변경에 뿔났다

    중국의 대표적인 반체제 인사이자 2010년 노벨평화상 수상자인 류샤오보(劉曉波)가 다시 미국과 중국 간 갈등의 한복판으로 들어왔다. 14일 로이터 통신에 따르면 미국 상원은 지난 12일 워싱턴에 있는 주미 중국대사관 앞 광장과 도로 일대의 명칭을 ‘국제 광장’에서 ‘류샤오보 광장’으로 바꾸는 법안을 만장일치로 통과시켰다. 해당 법안은 공화당 대선 후보인 테드 크루즈(텍사스) 상원의원이 발의한 것으로, 민주당은 크루즈 의원이 버락 오바마 대통령이 지명한 노르웨이와 스웨덴 대사 인준안 반대를 철회하자 광장 명칭 변경 법안에 찬성했다. 미국 의회는 1984년 소련의 대사관 앞 광장도 소련의 핵물리학자이자 반체제 인사였던 안드레이 사하로프의 이름을 따 ‘사하로프 광장’으로 바꾼 적이 있다. 이에 대해 주미 중국대사관은 “광장 명칭 변경은 중국에 대한 도발로 기대한 것과 정반대의 결과를 초래할 것”이라고 반발했다. 관영 환구시보도 사설을 통해 “미국이 중국대사관 앞 광장의 이름을 중국의 범죄자 이름으로 바꾸면 중국이 화낼 것이라고 생각한 것 같다”면서 “미국이 군사·경제적으로 중국을 어떻게 할 방법이 없으니 치졸한 방식으로 중국을 역겹게 한다”고 비난했다. 이 법안은 하원을 거친 뒤 오바마 대통령이 서명해야 발효된다. AP는 “오바마 대통령이 대사 임명 반대를 철회한 크루즈 의원에게 감사의 표시로 법안에 사인할 것 같지는 않다”면서 “백악관 참모들도 미·중 마찰을 우려해 대통령에게 거부권 행사를 건의했다”고 보도했다. 류샤오보는 컬럼비아대에서 방문학자로 지내던 1989년 6월 4일 톈안먼(天安門) 민주화 운동이 발발하자 곧바로 중국으로 돌아와 민주개혁을 요구하는 운동에 동참했다. 이후 중국 민주화 운동의 핵심 인물이 됐다. 복역과 가택 연금을 거듭하다가 2009년 12월 25일 국가 전복선동죄로 11년형을 선고받고 현재 랴오닝성 진저우의 한 감옥에 수감돼 있다. 베이징 이창구 특파원 window2@seoul.co.kr
  • 우주 탄생 푸는 ‘천문학 혁명’ 열렸다

    우주 탄생 푸는 ‘천문학 혁명’ 열렸다

    연구팀, 작년 9월 14일 첫 포착 한국 연구진 수차례 분석·검증 “다중 신호 천문학 새 시대 열려” 우리나라 과학자들이 포함된 14개국 1000여명의 국제연구단이 100년 전 아인슈타인이 예측했던 ‘중력파’(重力波)를 찾아내는 데 성공했다. 미국 레이저간섭계 중력파관측소(LIGO)는 11일 오전 10시 30분(현지시간) 미국 워싱턴DC 외신기자클럽에서 기자회견을 갖고 블랙홀이나 중성자별 같이 질량이 큰 물체들이 충돌하거나 폭발할 때 발생하는 중력파를 인류 역사상 최초로 관측했다고 공식 발표했다. 이번 연구에 참여한 한국중력파연구협력단(KGWG)도 12일 오전 9시 서울 명동에서 기자회견을 갖고 ‘금세기 최고의 발견’으로 평가받는 중력파 발견의 의미를 설명했다. 이번 관측 결과는 물리학 분야 국제학술지 ‘피지컬 리뷰 레터스’ 11일자에 실렸다. 논문에 실린 저자는 1000여명으로, 한국인 과학자도 14명 포함돼 있다. 2014년 3월 미국 하버드·스미소니언 천체물리센터 ‘바이셉(BICEP)2’ 연구진이 남극 하늘에서 초기 우주 팽창에 따른 중력파를 최초로 발견했다고 발표했지만, 재검토 결과 ‘우주 먼지’로 인한 오류로 밝혀져 철회된 바 있다. 이 때문에 LIGO 연구팀은 지난해 9월 14일 오전 5시 51분(현지시간) 중력파를 포착한 뒤 발견 사실을 외부에는 비밀에 부친 채 데이터의 잡음을 제거하고 여러 차례 재검토를 거친 결과 ‘중력파’가 확실하다는 결론을 내렸다. KGWG에서 데이터 분석을 담당한 오정근 국가수리과학연구소 선임연구원은 “지난해 9월 14일 저녁 8시 미국 LIGO 연구단에서 ‘매우 흥미로운 사건!’(Very Interesting Event!)이라는 제목의 이메일을 받았는데 중력파를 발견했다는 내용이었다”며 “메일을 받은 뒤 처음에는 잘못된 신호를 잡은 것이 아닐까 하는 의구심이 있었지만 수많은 분석과 검증으로 중력파라는 확신을 갖게 됐다”고 말했다. KGWG 단장인 이형목 서울대 물리천문학부 교수는 “이번 발견은 최초의 중력파 검출이라는 것뿐만 아니라 중력파 관측을 통해 천체를 탐구하는 ‘중력파 천문학’의 문을 열었다는 데 큰 의미가 있다”며 “중력파 천문학이 발달하면 질량이 큰 별의 생성과 진화, 초기 우주 생성 등 지금까지 인류가 알 수 없었던 문제들이 풀리게 될 것”이라고 설명했다. 김정리 연세대 천문대 박사는 “이번 중력파 발견으로 천체 현상을 더욱 정밀하고 정확하게 관찰·분석할 수 있는 ‘다중 신호 천문학’이 가능해질 것”이라고 기대감을 드러냈다. 이를테면 은하에서 초신성이 폭발할 경우 LIGO는 중력파를, 지난해 노벨물리학상을 받게 해 준 일본 슈퍼카미오칸데는 중성미자를, 전 세계에 있는 광학망원경과 전파망원경은 초신성을 동시에 관측함으로써 기존에 비해 훨씬 방대한 데이터를 얻을 수 있게 된다는 뜻이다. 이번 발견으로 올해 노벨물리학상이 1980년대에 중력파 검출 수단으로 LIGO를 처음 제안한 미국 MIT 물리학과 라이너 와이스 명예교수, 캘리포니아공대(칼텍) 물리학과 킵 손 명예교수, 로널드 드레버 명예교수 등에게 주어질 것으로 점쳐지고 있다. 특히 킵 손 교수는 2014년 개봉한 영화 ‘인터스텔라’의 과학총괄자문을 맡기도 했다. 유용하 기자 edmondy@seoul.co.kr 아인슈타인이 중력파를 예측한 지 100년 만에 그 실체가 확인됐다. 태양의 질량보다 큰 블랙홀(검은 원) 2개가 근접해 돌면서 중력파를 만들어 내고 있는 가상도. 작은 사진은 11일 오전 10시 30분(현지시간) 미국 워싱턴DC에서 열린 중력파 발견 공식발표 기자회견. 모니터에 중력파 파장이 나타나 있다. 네이처 제공·워싱턴 EPA 연합뉴스
  • [사이언스 톡톡] 휘어지는 시공간의 비밀, 중력파 100년 만에 찾았다

    [사이언스 톡톡] 휘어지는 시공간의 비밀, 중력파 100년 만에 찾았다

    내가 예견했던 수많은 현상 중 100년 동안 유일하게 수수께끼로 남아 있던 ‘중력파’(重力波)가 드디어 발견됐다지? 나는 알베르트 아인슈타인일세.●NSF 공식 발표… 한국 연구진도 참여 미국과학재단(NSF)이 11일 오전 10시 30분(현지시간) 중력파 발견을 공식화했더군. 이번에 중력파를 발견한 연구진은 미국과 한국, 독일, 영국, 이탈리아, 프랑스 등 15개국 83개 연구소 과학자 1006명이 참여한 대규모 연구 집단이라네. 이들은 미국 루이지애나주 리빙스턴과 워싱턴주 핸퍼드에 ‘레이저 간섭계 중력파 관측소’(LIGO)를 만들어 중력파를 측정했어. LIGO는 길이가 4㎞에 이르는 진공 터널을 2개 이어 붙이고 양끝에 거울을 달아 그 사이에 레이저가 오가도록 한 장치야. 중력파가 터널을 지나가면 거울이 출렁이면서 거울이 비뚤어져 레이저의 위치가 변하게 되는 거지. 물론 변화의 폭이라고 해야 원자 하나의 100만분의 1 정도밖에는 안 되지만 말이야.●중력, 시공간의 휘어짐 때문에 발생 이번에 발견된 중력파는 각각 태양의 29배와 36배 질량을 가진 블랙홀 2개가 충돌해 새로운 블랙홀이 되면서 만들어진 것이라더군. 중력파의 존재는 내가 1915년 11월 25일 ‘프로이센 과학 아카데미’에 발표한 ‘중력장 방정식’(일반상대성이론)이란 제목의 논문 발표 때로 거슬러 올라간다네. 위대한 물리학자 아이작 뉴턴은 중력이란 두 물체 사이에 나타나는 만유인력이라는 힘 때문이고, 시공간과 물체는 아무런 영향을 주고받지 않는 것으로 봤다네. 그렇지만 일반상대성이론에 따르면 시공간은 물체의 분포로 인해 휘어지고, 중력은 시공간의 휘어짐 때문에 발생하는 것이지. 푹신한 소파를 상상해 보게. 거기에 앉거나 무거운 물건을 올려놓으면 아래로 움푹 들어가겠지. 그 주변에 조그만 구슬을 올려놓으면 휘어진 표면을 따라 구슬이 굴러가지 않겠나. 내가 생각한 우주도 마찬가지네. 크기가 크거나 중력이 큰 별 주변은 시공간이 굴절되고, 그 굴절된 시공간을 따라 물체가 움직이게 되는 거지.●블랙홀 충돌에 시공간 흔들리며 파동 별이 폭발하거나 블랙홀끼리 충돌하는 등 급격한 변화가 발생하면 시공간이 흔들리면서 파동의 형태로 퍼져 나가게 되는데 이것이 바로 중력파일세. 빛의 속도로 전달되는 중력파를 관측하면 먼 우주까지 보는 것이 가능하지만 문제는 파동의 세기가 아주 약해서 측정이 쉽지는 않다는 거야. 미국 메릴랜드대 조지프 웨버 박사가 1969년 초기 형태의 검출 장치를 만들어 중력파를 찾아 나서기 시작한 이후 지금까지 많은 연구자가 중력파란 물리학의 성배를 찾아 나섰다네. 2014년 3월에도 미국 하버드·스미스소니언 천체물리센터가 ‘바이셉2’라는 특수망원경으로 중력파 검출에 성공했다고 발표했지만 재검증 결과 ‘우주 먼지’로 판명됐지. ●‘엑스레이’처럼 우주 내부 관측 기대 어쨌든 이번 중력파 발견은 우주 깊숙한 곳에서 일어나는 일을 좀 더 잘 알 수 있는 계기가 될 것으로 기대된다네. 지금까지는 우주를 관측하는 데 주로 전자기파를 사용했는데, 전자기파로는 천체 표면에 대한 정보밖에 얻을 수 없었지. 엑스선이 사람의 몸속을 더 잘 알게 해 줬듯이 중력파는 별의 내부 사정을 잘 알 수 있게 해 줄 거라 생각하네. 만약 빅뱅 초기에 발생한 중력파를 측정할 수만 있다면 우주의 진화에 대해 더 많은 정보를 얻을 수 있겠지. 유용하 기자 edmondy@seoul.co.kr
  • 시공간 일그러짐 전달 중력파 드디어 찾았나

    11일 발표… 우주탄생 비밀 열쇠 100년 전 알베르트 아인슈타인(1879~1955)에 의해 존재가 주장됐으나 실제로 측정된 적은 없는 중력파의 관측에 관한 주요 발표가 미국에서 11일(현지시간) 이뤄질 예정이다. 전문가들은 중력파를 최초로 발견했다는 ‘세기적 사실’이 깜짝 발표될 것으로 전망하면서 흥분하고 있다. 아인슈타인은 1916년 발표한 일반상대성이론에서 빅뱅 이후 우주 공간 전체에 전자기파가 퍼지는 과정에서 지구 등 거대한 질량을 가진 천체에 의해 중력이 변하면서 시공간도 함께 휘어진다고 주장했다. 이때 휘어진 시공간이 질량과 중력 사이에 파동을 일으키는 중력파를 만들어냈다. 중력파는 우주에서 수백만 광년을 여행하며 전자기파에 의해 어떠한 왜곡과 변화도 받지 않기 때문에 초신성 폭발 등 중력파 방출 당시의 정보를 온전히 담고 있다. 중력파가 1세기 만에 발견된다면 우리 시대의 가장 큰 과학 발견 중 하나가 될 것이며, 우주의 탄생을 이해하는 데 크게 기여할 수 있다고 AFP가 전했다. 중력파를 관측하면 ‘금세기 최고의 발견’이라거나 ‘노벨 물리학상 수상감’이라는 평가가 나온다. 미국의 국립과학재단(NSF)은 8일 성명에서 “캘리포니아공과대(칼텍), 매사추세츠공과대(MIT), 레이저간섭계중력파관측소(LIGO) 과학협력단의 과학자들이 11일 오전 10시 30분(한국시간 12일 0시 30분) 워싱턴DC에서 기자회견을 갖고 중력파 발견 활동에 대한 현황을 보고할 것”이라고 밝혔다. LIGO는 지구를 지나가는 중력파가 만드는 매우 미세한 진동을 감지하기 위해 칼텍과 MIT의 과학자들이 NSF의 지원을 받아 만든 시설로, 루이지애나주 리빙스턴과 워싱턴주 핸퍼드에 설치돼 있다. NSF가 발표한 성명은 매우 모호해 11일 어떤 내용이 발표될지 추측하기 어렵다. 하지만 LIGO가 중력파를 발견했다는 소문은 지난달부터 돌고 있었다. 지난 3일 맥매스터대의 이론물리학자 클리프 버게스는 독립된 소스를 통해 LIGO가 두 개의 블랙홀이 합쳐질 때 방출된 중력파를 발견했으며 이 발견은 네이처에 실릴 예정임을 확인했다고 밝힌 것으로 과학전문매체 사이언스가 보도했다. 박기석 기자 kisukpark@seoul.co.kr
  • 화성 표면서 ‘꽃양배추’ 닮은 미생물 흔적 발견

    화성 표면서 ‘꽃양배추’ 닮은 미생물 흔적 발견

    우주 화성의 표면에서 발견된, 꽃양배추를 닮은 패턴의 정체가 화성의 초기 생명체와 연관이 있다는 주장이 나왔다. 영국 인디펜던트 등 해외 언론의 2일자(현지시간) 보도에 따르면, 화성 표면에서 포착한 패턴은 미국항공우주국(이하 NASA)의 화성 탐사선인 스피릿 로버가 2008년 화성의 구세브(Gusev) 분화구 인근에서 촬영한 것이다. 당시 과학자들은 해당 패턴의 정확한 정체와 형성 과정의 의문을 풀지 못했는데, 최근 연구에 따르면 이것이 초기 생명체의 비밀을 담은 미생물의 흔적이며, 지구에서도 이와 유사한 생명체의 흔적을 찾을 수 있을 것으로 기대를 모았다. 미국 애리조나주립대학의 스티블 너프 박사와 잭 파머 박사는 지난 해 12월 미국 지구물리학회 연례회의에서 화성 표면에서 발견된 미생물의 흔적이 이산화규소 침전물과 관계가 있을 것으로 예측된다는 내용의 연구결과를 발표한 바 있다. 특히 스피릿 로버가 촬영한 ‘꽃양배추 패턴’은 과거 화성에서 살았던 미생물 생명체로부터 만들어진 것이며, 이 미생물 패턴의 형성 과정은 지구에서 고대 미생물이 형성됐던 것과 비슷할 것으로 내다봤다. 이들이 주목한 것은 칠레의 아타카마 사막이다. 80여개의 분화구가 있는 이 지역의 1500만 년 전 생성된 것으로 추정되며, 화성처럼 매우 건조하며, 이산화규소 농도가 매우 높다. 칠레 아타카마 사막 외에도 미국 와이오밍주와 뉴질랜드 타우포 화산지역 등지에서도 꽃양배추 형태의 지형이 발견된 바 있으며, 전문가들은 이들 지역과 화성 토양, 그리고 꽃양배추 패턴을 만든 미생물 사이에 공통적인 연관관계가 있을 것으로 보고 있다. 이와 관련해 캐나다 알베르타대학의 커트 콘하우저 박사는 “현재 지구상에 존재하는 유사한 형태의 형성물과 화성의 토양 패턴을 비교한다고 해서 화성에 최초의 생명체(미생물)이 있었는지를 가늠하는 것은 어렵다고 본다”고 회의적인 의견을 내놓았다. 이번 연구결과는 스미소니언 박물관이 발행하는 스미소니언 저널을 통해 공개됐다.   송혜민 기자 huimin0217@seoul.co.kr
  • ​[이광식의 천문학+] 블랙홀의 모든 것…사실과 이론과 정의

    ​[이광식의 천문학+] 블랙홀의 모든 것…사실과 이론과 정의

    블랙홀은 우주에서 가장 기이하고도 환상적인 천체라 할 수 있다. 물질밀도가 극도로 높은 나머지 빛마저도 빠져나갈 수 없는 엄청난 중력을 가진 존재다. ​ 이 괴이쩍은 존재를 최초로 예언한 사람은 1783년, 영국의 과학자 존 미첼이었다. 그는 뉴턴 역학을 기반으로, 충분히 무거운 별의 경우 탈출 속도가 광속보다 더 커, 빛마저도 탈출할 수 없을 것이라고 추측했다. 13년 뒤 피에르시몽 라플라스도 비슷한 제안을 한 데 이어, 그로부터 1세기를 훌쩍 뛰어넘어 1916년, 아인슈타인이 일반상대성 이론에서 블랙홀을 이론적으로 선보였다. ​일반 상대성 이론은 중력을 구부려진 시공간으로 간주하며, 질량을 가진 천체는 주변 시공간을 휘게 만든다는 이론이다. 사실 이전에는 ‘블랙홀’이란 이름조차 없었다. 그 대신 ‘얼어붙은 별’, ‘붕괴한 별’ 등의 이상한 이름으로 불려왔다. '블랙홀'이란 용어를 최초로 쓴 사람은 미국 물리학자 존 휠러로, 1967년에야 처음으로 일반에 소개되었으며, 블랙홀의 실체가 발견된 것은 1971년이었다. 그 존재가 예측된 지 거의 60년이 지나서야 이름을 얻고 실체가 발견되었으니, 그 또한 심상한 일은 아니다. 블랙홀에도 종류가 있다 그런데 이 블랙홀에도 종류가 있다는 사실을 일반 사람들은 잘 모르고 있는 듯하다. 블랙홀이라고 다 같은 것은 아니고, 세 가지 유형이 있는데, 곧 항성 블랙홀과 초대질량 블랙홀 그리고 중간질량 블랙홀이 그것들이다. ♦항성 블랙홀— 작지만 강하다 항성이 생애의 마지막에 이르러 남은 연료를 다 태우고 나면 중력붕괴를 일으킨다. 내부에서 더이상 에너지가 생성되지 않기 때문에 천체 자체의 압력을 감당하지 못해 내부로 무너지는 것이다. 이때 태양 질량의 약 3배가 못되는 별은 중성자별이 되거나 백색왜성이 된다. 하지만 그보다 덩치가 큰 별들은 중력붕괴가 극도로 진행되어 항성 블랙홀을 만든다. 개별적인 별이 중력붕괴를 일으켜 만들어지는 블랙홀은 대체로 작지만 물질밀도는 놀라울 정도로 높다. 태양질량의 3배 정도 되는 별이 한 도시 크기 로 압축된다. 이 천체의 중력은 끔찍할 정도로 강해서 주위의 모든 가스와 먼지들을 끌어당겨 삼킴으로써 덩치를 키워간다. 하버드-스미소니언 천체물리학 센터에 따르면, 우리은하에 이러한 항성 블랙홀이 수억 개 정도는 된다고 한다. ♦거대질량 블랙홀— 어떤 가설이 맞을까?작은 블랙홀들은 은하의 곳곳에 존재하지만, 거대질량 블랙홀은 은하 중심부에 자리잡고 그 은하를 중력적으로 지배한다. 그 덩치는 놀랍게도 태양 질량의 수백만 배 또는 수십억 배에 달하기도 한다. 그러나 지름의 크기는 우리 태양과 비슷하다. 어마어마한 물질 밀도를 가지고 있다는 뜻이다. 이러한 블랙홀이 거의 모든 은하의 중심부에 있는 것으로 보이며, 우리 은하의 중심부에도 똬리를 틀고 있다. 이런 거대질량의 블랙홀이 어떻게 생성되었는가에 대해서 과학자들은 아직까지 정확한 답안을 작성하지 못하고 있다. 어쨌든 이런 블랙홀이 은하 중심에 자리잡고 나면 주변에 풍부한 물질들을 닥치는 대로 탐식하고, 그 결과 엄청난 질량의 블랙홀로 성장한다는 정도만 알려져 있다. 과학자들은 이 같은 거대질량 블랙홀이 무수히 많은 작은 불랙홀들의 합병 결과물이 아닐까 하고 생각하고 있다. 또는 거대한 가스 구름이 급격한 중력붕괴를 일으켜 이런 블랙홀로 발전한 것일 수도 있다고 본다. 세번째 가능성은 성단을 이루던 별들이 한 점으로 대함몰을 일으켜 블랙홀이 되었다는 가설이다. 나라면 어떤 가설에 손을 들어줄까 생각해보는 것도 재미있는 일이다. ♦중간질량 블랙홀— 블랙홀도 中庸의 미덕이?원래 과학자들은 블랙홀이 아주 작은 것과 엄청 큰 것, 두 종류만 있다고 생각해왔다. 그런데 최근 블랙홀에도 미디엄 사이즈(IMBHs)가 있다는 사실이 발견되었다. 이런 블랙홀은 성단 안에서 별들이 연쇄충돌을 일으킨 결과 태어나는 것으로 알려졌다. 이런 블랙홀들이 같은 지역에서 여럿 만들어지면 결국에는 합병과정을 밟게 되는데, 은하 중심의 거대질량 블랙홀은 이 같은 경로를 거쳐 생성된 것으로 보고 있다. 2014년에 마침내 천문학자들은 한 나선은하의 팔에서 중간질량 블랙홀이 탄생하는 것을 발견했다. 그들의 존재는 알고 있었지만 오랫동안 물증을 찾지 못했던 천문학자들이 애타게 기다리던 발견이었다. 블랙홀 존재 — 어떻게 알 수 있나?블랙홀은 엄청난 질량을 갖고 있지만 덩치는 아주 작다. 그만큼 물질밀도가 극도로 높다는 뜻이다. 따라서 중력이 극강이어서 어떤 것도 블랙홀을 탈출할 수가 없다. ​ 지구 탈출속도는 초속 11.2km이며, 빛의 초속은 30만km다. 블랙홀의 중력이 너무나 강해 탈출속도가 30만km를 넘기 때문에 빛도 여기서 탈출할 수가 없는 것이다. 따라서 우리는 블랙홀을 볼 수가 없다. 그런데 과학자들은 블랙홀의 존재를 확인할 수가 있다. 어떻게? 블랙홀이 주변의 가스와 먼지를 강력히 빨아들일 때 방출하는 X-선 복사로 그 존재를 알 수 있는 것이다. 우리 은하 중심부에 있는 거대질량 블랙홀은 두터운 먼지와 가스로 뒤덮여 있어 X-선 방출을 막고 있다. 물질이 블랙홀로 빨려들어갈 때 블랙홀의 사건지평선 입구에서 안으로 들어가지 않고 스쳐지나가는 경우도 더러 있다. 블랙홀이 직접 보이지는 않지만, 물질이 함입될 때 발생하는 강력한 제트 분출은 아주 먼 거리에서도 볼 있다. 블랙홀은 특이점과 안팎의 사건 지평선으로 구성된다. 특이점이란 블랙홀 중심에 중력의 고유 세기가 무한대로 발산하는 시공간의 영역으로, 여기서는 물리법칙이 성립되지 않는다. 즉, 사건의 인과적 관계가 보장되지 않는다는 뜻이다. 이 특이점을 둘러싸고 있는 것이 안팎의 사건 지평선으로, 바깥 사건지평선은 물질이 탈출이 가능한 경계이지만, 안쪽의 사건 지평선은 어떤 물질이라도 탈출이 불가능한 경계다. 기존의 고전 역학에서 볼 때 빛까지도 이 중력장에서 벗어날 수가 없다는 결론을 내렸지만, 양자역학으로 오면 사정이 좀 달라진다. 블랙홀도 무언가를 조금씩 내놓을 수 있다는 것이다. '블랙홀이 완전히 검지는 않다'​ 1970년대 영국의 물리학자 스티븐 호킹은 블랙홀이 양자 요동(quantum fluctuation)으로 인해 무언가를 내놓는다는 것을 보여주는 이론을 완성했다. 양자론에 따르면, 아무것도 없는 진공에서 난데없이 입자와 반입자(antiparticle)로 이루어진 가상 입자 한 쌍이 나타날 수 있으며, 이 한 쌍은 매우 짧은 시간 존재하다가 쌍소멸된다. 대부분의 상황에서 이들 입자 쌍은 관측하기 힘들 정도로 매우 빠르게 생겼다가 소멸는데, 이를 양자 요동 또는 진공 요동이라 한다. 과학자들은 실제로 이 양자 요동의 존재를 실험적으로 확인했다. ​이 양자 요동 가운데 하나가 블랙홀의 사건 지평선 근처에서 일어난다면, 한 쌍의 입자가 사건 지평선 근처에서 생겨날 때는 블랙홀의 강한 기조력 때문에 헤어지기 쉽다. 즉, 두 입자 중 하나는 지평선을 가로질러 떨어지는 반면, 다른 하나는 밖으로 탈출하는 일이 발생할 수도 있다. 탈출한 입자는 블랙홀에서 에너지를 가지고 나간 것으로, 이 과정이 반복적으로 일어나면 외부의 관측자는 블랙홀에서 나오는 빛의 연속적인 흐름을 보게 된다. 호킹의 주장에 따르면, 이 같은 양자 요동 효과 때문에 블랙홀이 빛을 방출한다는 것이다. 이를 '블랙홀 증발'이라 하고, 이때 빠져나오는 빛을 '호킹 복사(Hawking radiation)'라 한다. 그래서 호킹은 '블랙홀이 실제로는 완전히 검지 않다'는 말로 이 상황을 표현했다. 호킹의 이론대로 블랙홀이 계속 증발한다면, 수조 년의 시간이 흐르면 블랙홀 자체가 완전히 사라질 수도 있다는 얘기가 된다. 블랙홀에는 질량과 전하, 각운동량 외에는 아무 정보도 얻을 수 없다. 그래서 흔히들 블랙홀에는 세 가닥의 털밖에 없다고 말한다. 이처럼 인류는 아직까지 블랙홀에 대해 아는 것보다 모르는 것이 더 많은만큼 블랙홀은 21세기 천문학과 물리학에서도 여전히 화두가 될 것으로 보인다. 이광식 통신원 joand999@naver.com
  • 달의 중력, ‘지구 강수량’에 미치는 영향 최초 입증

    달의 중력, ‘지구 강수량’에 미치는 영향 최초 입증

    밤에 달무리가 생기면 다음 날 비가 내린다는 속담처럼, 달과 강수량이 밀접한 관계에 있다는 사실이 과학적으로 입증됐다. 미국 워싱턴대학 연구진은 열대지방에서 보름달이 높이 뜨면 기압이 변화하면서 강수량이 적어진다고 주장했다. 연구진이 1998~2012년 미국항공우주국(NASA) 및 일본우주항공연구개발기구(Japan Aerospace Exploration Agency)의 강수량측정 위성을 이용해 수집한 데이터를 분석한 결과, 달이 높게 뜰 때와 낮게 뜰 때, 강수량과 기압에 변화가 발생한다는 사실을 알아냈다. 이러한 변화는 달이 잡아당기는 중력의 힘 때문으로, 달이 높게 뜰 때에 달의 중력이 강하게 작용하면서 지구의 대기에 영향을 미친다. 달의 중력에 이끌린 지구 대기의 기압은 높아지며, 높아진 기압 탓에 기온이 상승하게 된다. 대기 기온 상승으로 따뜻해진 공기에는 수분을 머금을 수 있는 공간이 넓어진다. 특히 기온이 낮아도 구름에 얼음알갱이가 생성되지 않는 열대지방에서는 물방울들이 대기와 구름 사이에서 돌아다니다가 서로 부딪히고 뭉쳐져서 무거워지면 비가 되어 떨어지는데, 대기가 머금을 수 있는 수분(물방울)의 양이 증가하면서 강수량이 미세하게 낮아진다는 것이 연구진의 설명이다. 다만 달의 위치에 따라 변화하는 강수량은 1% 정도로 미미해 인간이 감지하기에는 무리가 있을 수 있다. 달의 위치에 따라 기압과 기온이 변화한다는 사실은 기존 연구를 통해 알려진 사실이지만, 달의 중력 역시 기압과 기온에 영향을 미쳐 강수량의 변화를 가져온다는 사실이 밝혀진 것은 이번이 처음이다. 연구진은 “달의 중력에 따른 강수량의 차이가 매우 미미한 것은 사실이다. 그러나 이러한 연구는 지구의 기후를 연구하고 기후변화에 대응하기 위한 자료 수집에 도움이 될 것”이라고 밝혔다. 이번 연구는 지구물리학 연구지(Geophysical Research Letters) 최신호에 실렸다. 송혜민 기자 huimin0217@seoul.co.kr
  • [서울신문이 만난 사람] 박광서 종교자유정책연구원 대표

    [서울신문이 만난 사람] 박광서 종교자유정책연구원 대표

    한국은 많은 종교가 평화롭게 공존하는 ‘종교 천국’이라고 불린다. 하지만 이 땅에선 차별, 강요란 이름의 종교 편향과 폭력이 빈번히 발생하며 그로 인한 갈등과 마찰은 더이상 ‘종교 천국’이 아니라는 관측까지 낳는 형국이다. 종교자유정책연구원(종자연)은 종교가 평화롭게 공존하는 세상을 만들자며 그 차별과 편향의 부조리에 맞서고 있는 대표적 시민사회단체다. 그들이 앞장서 온 개선의 몸짓과 성과는 숱하다. 2010년 대광고 사건의 대법원 승소, 2008년 공직자 종교중립법 제정, 2007년 종교시설의 투표소 설치 불가, 지하도로의 사적 점용을 허가한 사랑의교회 문제와 관련한 법률 개정…. 2006년부터 종자연을 이끌고 있는 박광서 대표(전 서강대 물리학과 교수)를 만나 그간의 사정과 한국 종교 상황에 대해 들었다. →종자연은 일반인들에겐 생소하다. 어떤 단체인가. -2004년 대광고 학생회장 강의석군이 학교 강제 예배에 대해 ‘종교 자유, 학교는 예외인가’라는 문제 제기를 하며 1인시위, 제적 처분, 단식으로 사회에 널리 알려졌다. 당시 길희성 교수, 류상태 목사 등 개신교인 중심의 학교종교자유를위한시민연합(학자연)이 움직였고 언론, 정치권에서 핫이슈로 다뤘다. 그 후 참여불교재가연대 주도로 각계 인사 50여명의 준비위원회가 결성돼 1년여의 연대 활동을 거쳐 2006년 3월 학자연과 기존 종자연이 합쳐져 공식 출범했다. →활동 내용을 놓고 개신교계와 마찰이 끊이지 않는 이유는. -종자연의 뿌리가 개신교계 인사들의 모임인 학자연과 불교시민단체 재가연대이기 때문일 것이다. 종교 인권과 정교분리 문제를 야기하는 대부분 사례가 개신교계에서 불거진다는 측면이 짙다. 2012년도에 국가인권위원회가 발주한 인권 상황 실태조사 연구용역 중 종교단체가 운영하는 학교에서의 ‘종교에 의한 차별 실태와 개선 방안 연구’를 종자연이 맡게 된 과정과 개신교계의 반발 또한 한국 사회의 특이한 종교 권력이 만들어 낸 해프닝이다. 1, 2차 접수단체가 종자연밖에 없었고 나중에 서울대 종교문제연구소가 함께 신청했다가 평가 과정 중 스스로 철회하는 곡절 끝에 종자연이 최종 선정됐다. 인권위가 개신교계 눈치를 살펴 종자연에 맡기길 조심스러워했던 것 같다. →그렇다면 지금 학교의 종교교육 실태는 나아졌다고 보나. -강제 종교교육이 위법하다는 대법원 판결 이후 개인 종교 인권에 대한 인식이 달라지긴 했다. 일부 학교 현장에선 여전히 학부모까지 참석한 입학식, 졸업식 등 공식 행사를 대놓고 종교 행사로 치르고 매주 이뤄지는 종교교육과 강제 예배도 달라지지 않았다. 대부분의 학교 운영예산을 국민 세금으로 지원받고 대다수 학생이 그 종교와 무관하다는 것을 감안할 때 지나치다. 무엇보다 학생과 학부모가 학교를 상대로 싸우길 피곤해한다. 감독관청인 교육청도 형식적 공문을 보내 장학지도할 뿐 세밀한 상황을 파악하고 강력하게 개선을 주문하는 등 인권 향상을 위해 행정력을 동원할 생각은 없어 보인다. →종교(편향)교육 실상을 구체적으로 든다면. -스님이 유치원을 방문했을 때 한 어린이가 침을 뱉기도 했고, 3년 전엔 도넛 가게에 들어가려던 비구니 스님을 한 아주머니가 막고 서서 소리치고 삿대질하며 못 들어가게 한 사건도 있었다. 석가탄신일 때 장로나 선교사가 불교 상징인 조계사 건너 길가에서 마이크를 동원한 선교를 하고 심지어 경내까지 들어와 소란을 피우기도 한다. 유명 사찰에 몰려가 소위 ‘땅 밟기’라는 걸 한 적도 있다. 일부 신자의 과격한 행동은 기독교 근본주의에 젖은 종교 지도자들의 타 종교에 대한 비하, 혐오 발언이 이를 부추기는 측면이 없지 않다. 종교를 어떻게 가르치느냐가 중요한 이유이다. →공공 영역에서의 종교 신념 표출을 문제 삼는 이유는. -국가가 공적으로 관리하는 국민 전체의 공유 공간에 특정 종교 광고가 내걸리거나 공적인 자리에서 공인이 종교 신념을 과도히 표출하는 일은 자제돼야 한다. 내가 낸 세금으로 만들어지고 내 돈으로 통행료까지 내며 다니는 고속도로에서도 피할 길 없이 특정 종교 선전을 마주해야 하고 서울광장이란 수도 서울의 핵심 공간에 매년 종교상징물이 설치되는 건 위헌적 발상이다. 공기관이 그걸 허용했다는 사실이 놀랍다. 또 국민 세금으로 국가가 관리하고 좋은 성적을 낼 때 연금은 물론 병역면제까지 해 주는 국가대표는 공인 중의 공인이다. 올림픽, 월드컵 같은 국제스포츠행사에서 티나게 기도 세리머니를 하는 건 우리 선수들뿐이다. →우리나라의 종교 인권 상황이 개선되지 않는 이유는. -지난 수십 년간 꾸준히 장애인 권리, 여성 인권, 노동권 등 여러 분야에서 인권 신장을 일궈 왔다. 하지만 유독 종교와 관련된 부분은 사회의 변화를 외면하며 개인의 인권을 제약하는 힘으로 작용하고 있다. 일부 종교계가 운영하는 학교나 복지단체 등에서 지속적으로 특정 종교를 강요해 기본권인 종교 자유가 전혀 보호받지 못하거나 동성애 등 성적 지향에 대해서도 개신교계가 사회적 논의 자체를 완강히 거부하며 정치권을 압박하면서 법제화에 아무런 진척을 보지 못하고 있다. →우리 사회에서 종교 폭력과 차별의 구체적인 사례를 든다면. -곳곳에서 다양하게 나타난다. 목사의 개입 아래 납치, 감금한 사람을 개종 교육시켜 대법원에서 유죄판결을 받은 사례도 있다. 종교재단에서 운영하는 학교 교직원이나 복지단체 직원 채용 때 특정 종교인에게만 기회를 주는 것도 차별이다. 직업 선택에서 종교인이 아니라도 할 수 있는 부분까지 특정 종교인에게 기회를 줘 노동권, 직업선택권에서 심한 차별을 당하고 사는 셈이다. 인권위가 지속적으로 개선을 권고하지만 종교계는 요지부동이다. →종교인과세국민운동본부 공동대표는 왜 맡았나. -천주교는 물론 불교, 원불교, 심지어 개신교계도 종교인 과세에 원칙적으로 찬성하는 입장인데 대형 교회 중심의 보수 개신교는 저항하는 형국이고 반대 논리도 빈약하다. 비과세 관행, 이중과세, 근로가 아닌 봉사 등의 논리 배경은 세무조사, 즉 재정 투명화와 관련된 듯하다. 종교인 과세는 원칙적으로 정부가 근로소득세를 부과하면 될 일이다. 정부가 종교계 압박을 의식해 국회로 공을 돌렸다. 국회도 새로운 세법 개정을 할 게 아니라며 정부에 되돌리면 그만인데 서둘러 이상한 법을 만들었다. 근로소득세 혹은 기타소득의 종교인 세목 중 하나를 본인이 선택하도록 했다. 종교인 세목을 선택하면 80%까지 실경비로 인정해 근로소득세보다 훨씬 적은 세금을 내게 되는 셈이다. 납세의무자에게 적게 낼지, 더 많이 낼지를 물어 세금을 결정하는 나라가 세상에 어디 있는가. →이슬람국가(IS) 테러와 관련해 이슬람 혐오증이 확산되는 추세인데. -다른 것을 포용하지 못하고 공존도 불가하다는 경직된 종교 근본주의에 대해 더욱 경계심을 갖게 하는 계기가 된 것 같다. 특정 종교 신념을 무차별적으로 모든 이에게 강제하려는 폭력성 때문이다. 한 민족, 한 종교로 충분하던 시절에야 아무 문제없었지만 다양한 것이 공존하는 시대에 적응하지 못해 생기는 부작용일 것이다. 수십 년 내 종교가 사라질 것이란 진단도 나온다. 개인적으로 종교의 권위와 기능이 달라질 것이고 또 그래야 하는 것 아닌가 생각한다. 그나마 종교 지도자들의 지혜로운 리더십이 살아 있다면 말이다. →종교에 대한 부정적 시각이 만만치 않은데. -우리나라는 종교라는 깃발만 꽂으면 무엇이든지 할 수 있는 이상한 구조를 갖고 있다. 인권 의식에 대한 깊은 이해 없이 종교 자유를 자신만의 자유로 과잉 해석한 결과이기도 하지만 서구라는 힘을 등에 업고 들어온 권력화된 종교이기에 가능했던 것 같다. 정당성을 결여한 정치권력이 정치와 종교의 영역을 서로 침범하지 않으면서 사회적 권력을 나눠 관리하기로 암묵적으로 약속한 결과이기도 하다. 시대가 달라졌다. 산업화, 민주화를 이룩해 내고 난 후 인권 의식도 높아졌고 비대해진 종교 권력과 종교 패거리 문화에 대해 거부감을 보이기 시작했다고 할 수 있다. 김성호 선임기자 kimus@seoul.co.kr ■박광서 대표는 ▲1949년 충남 공주 출생▲경기고 졸업 ▲서울대 문리대 물리학과 졸업▲미국 브라운대학 박사▲미국 MIT 연구원(1981~1983년)▲서강대 물리학과 교수(1983~2013년)▲한국교수불자연합회 창립(1988년)▲생명나눔실천본부 창립(1994년)▲고속철도경주도심통과반대운동(1996년)▲참여불교재가연대 상임대표 (1999~2006년)▲달라이라마방한준비위원회 공동집행위원장(2000~2002년)▲종교자유정책연구원 대표(2006년~)▲문화체육관광부 공직자종교차별신고센터 자문위원(2008~2010년)▲탈핵에너지교수모임 공동대표(2014년)▲달라이라마방한추진회 공동대표(2015년)
  • “미니 블랙홀 하나면 전 세계에 전력 공급 가능하다”

    “미니 블랙홀 하나면 전 세계에 전력 공급 가능하다”

    세계적인 물리학자인 스티븐 호킹 박사가 한 프로그램 강연을 통해 ‘미니 블랙홀’과 전력생산과의 관계를 설명해 학계의 관심이 쏠렸다. 호킹 박사는 BBC 라디오 방송 ‘리스 강의(Reith Lecture)’에서 블랙홀의 입자와 성질을 고려해 봤을 때, 크기가 비교적 작은 ‘미니 블랙홀’이 존재한다면 이를 이용해 전 세계인들이 함께 이용할 수 있을 만한 전기를 생산해내는 것이 이론적으로 가능하다고 설명했다. 호킹 박사의 이론에 따르면, 일반적으로 블랙홀은 수많은 ‘가상 미립자’(Virtual praticle)로 이뤄져 있으며, 이러한 가상 미립자는 블랙홀 안팎에서 합쳐지거나 서로 소멸시키는 과정을 거치게 된다. 이러한 미립자는 육안으로 확인하거나 입자 탐지기로도 탐색이 어렵다는 단점이 있지만, 과학자들은 블랙홀에서 이 미립자들이 이동하다가 블랙홀에 의해 방사선이 방출되는 지점으로 미립자들이 빠져나가는 것으로 보고 있다. 일반적으로 블랙홀은 태양 수준의 질량을 가졌으며 매우 낮은 속도로 입자를 방출하는데, 이런 과정에서는 입자를 눈으로 관찰하는 것이 불가능하다. 하지만 호킹 박사는 “산 정도 크기의 ‘미니 블랙홀’이라면 블랙홀에서 뿜어져 나오거나 이동하는 입자와 방사선을 관측하는 것이 가능하다”고 설명했다. 그의 이론에 따르면 블랙홀이 X선과 감마선을 방출할 때 발생하는 에너지는 1000만 메가와트 정도로, 이는 전 세계에 전기를 충분히 공급할 수 있는 양이다. 다만 호킹 박사는 이처럼 미니 블랙홀을 이용해 지구에 전력을 공급하기 위해서는 엄청난 에너지를 소화할 수 있는 발전소가 있어야 하는데 현재 기술로서는 이를 감당할 만한 발전소 건립이 어려운 상황이라고 분석했다. 무엇보다도 지구를 집어삼키지 않을 정도의 소규모 블랙홀이 있어야 하는데, 아직까지 이러한 블랙홀의 흔적을 찾지 못했다는 점이 안타깝다고 밝혔다. 한편 스티븐 호킹 박사는 영국 이론물리학자로, 루게릭병에도 불구하고 블랙홀 연구 등에서 뛰어난 업적을 남긴 천재 과학자다.  송혜민 기자 huimin0217@seoul.co.kr
위로