찾아보고 싶은 뉴스가 있다면, 검색
검색
최근검색어
  • 물리학자
    2025-12-09
    검색기록 지우기
  • 배정남
    2025-12-09
    검색기록 지우기
  • 배수구세정제
    2025-12-09
    검색기록 지우기
  • LB세미콘
    2025-12-09
    검색기록 지우기
  • 형사소송법 개정
    2025-12-09
    검색기록 지우기
저장된 검색어가 없습니다.
검색어 저장 기능이 꺼져 있습니다.
검색어 저장 끄기
전체삭제
1,844
  • 죽은 것도 산 것도 아닌 상자 속 고양이… 양자역학에선 가능해

    죽은 것도 산 것도 아닌 상자 속 고양이… 양자역학에선 가능해

    ‘탄생 100주년’ 양자역학 돌아보기핵무기·컴퓨터 개발 과정 흥미진진 양자역학의 개념을 설명할 때 ‘슈뢰딩거의 고양이’ 비유를 들곤 한다. 창문 없는 상자에 들어 있는 이 고양이는 방사성물질이 깨지면 독극물에 중독돼 죽을 수도 있지만 현재는 살아 있는, ‘살아 있지도 죽어 있지도 않은’ 상태에 있다. 입자가 중첩 상태로 존재하면서 서로 반대되는 두 가지 특징을 동시에 지닐 수 있다는 양자역학의 핵심을 설명한다. 오스트리아 출신 물리학자 에르빈 슈뢰딩거가 양자역학을 무너뜨리려고 생각해 낸 이야기가 이 분야를 대표하는 사례가 됐으니 그야말로 아이러니가 아닐 수 없다. 매사추세츠공대(MIT) 물리학과 교수이자 과학사 교수인 저자가 양자역학 탄생 100주년을 맞아 지난 한 세기를 돌아본다. 원자, 분자, 전자 등 물질의 기본단위에 대한 역학인 양자역학이 어디에서 왔고, 무엇인지, 어떻게 나아가고 있는지를 재미있게 소개한다. 책은 양자역학에 반대했던 알베르트 아인슈타인의 특수상대성이론과 하이젠베르크 행렬역학, 폴 디랙의 반물질 등 물리학이 맹렬한 속도로 현대화한 20세기 초부터 시작해 거인 과학자들의 발자취를 차례로 따라간다. 영화 ‘오펜하이머’(2023)로도 우리에게 익숙한 ‘맨해튼 프로젝트’와 히로시마 원자폭탄 투하를 비롯해 제2차 세계대전 이후 핵무기 연구 중 컴퓨터를 개발하고 발전시킨 과정, 냉전 당시 물리학자들의 사정 등이 흥미진진하다.
  • 시속 3만3000㎞ 바람 부는 ‘외계행성’ 정체

    시속 3만3000㎞ 바람 부는 ‘외계행성’ 정체

    시속 3만3000㎞라는 무시무시한 속도로 바람이 부는 외계행성이 사상 처음으로 감지됐다. 최근 독일 괴팅겐대학 등 공동연구팀은 외계행성 ‘WASP-127b’의 제트기류를 분석한 연구결과를 국제천문학술지 ‘천문학과 천체물리학’(Astronomy & Astrophysics) 21일자에 발표했다. 지구에서 약 520광년 떨어진 WASP-127b는 ‘태양계의 큰형님’ 목성보다 30%나 지름이 큰 가스행성이다. 다만 질량은 목성의 16%에 불과해 지금까지 관측된 행성 중 가장 밀도가 낮다. 연구팀은 칠레에 위치한 유럽남방천문대(ESO)의 초거대망원경(VLT)으로 WASP-127b 적도에서 부는 강력한 바람을 측정하는데 성공했다. 그 결과 WASP-127b 적도 부근에서 시속 3만3000㎞라는 엄청난 속도의 제트기류가 감지됐는데 말 그대로 초음속 바람이다. 지구 상층대기에서 부는 제트기류가 시속 442㎞ 이상인 것과 비교하면 거의 75배나 강력한 바람인 것. 특히 해왕성 역시 고고도에서 시속 2000㎞의 바람이 부는데 WASP-127b와 비교해보면 그저 미풍인 셈이다. 논문의 주저자인 천체물리학자 리사 노르트만은 “WASP-127b 적도를 도는 초음속 제트기류는 다른 어떤 행성보다도 빨라 놀라울 정도”라면서 “지구의 제트기류가 기상패턴에 중요한 역할을 하기 때문에 외계행성에 대한 새로운 통찰력을 제공한다”고 설명했다. 연구팀에 따르면 WASP-127b는 2016년 처음 발견됐으며 흥미로운 몇가지 특징이 있다. 먼저 WASP-127b는 태양계에는 존재하지 않은 형태인 ‘뜨거운 목성’(hot Jupiter)형 행성이다. 뜨거운 목성은 우리의 목성과 같은 거대한 가스 행성이지만 모항성과 매우 가까운 탓에 표면온도가 뜨거워 이같은 별칭으로 불린다. 실제 WASP-127b는 지구와 태양거리 약 5%의 불과한 거리에서 4일마다 모항성을 공전한다. 다만 행성의 한쪽 면만 모항성을 향하고 있어, 한쪽 면의 대기온도는 1127°c에 달할 만큼 뜨겁고 다른 한쪽 면은 차갑다. 논문의 공동저자인 데이비드 콘트 박사는 “WASP-127b는 목성처럼 주로 수소와 헬륨으로 구성돼 있지만 대기에는 일산화탄소와 물과 같은 더 복잡한 분자의 흔적도 확인됐다”면서 “뜨거운 면에 강한 방사선을 받는다는 사실이 대기 역학의 주요 원인으로 추정된다”고 밝혔다.
  • 시속 3만3000㎞…초음속 ‘지옥 바람’ 부는 외계행성 포착 [아하! 우주]

    시속 3만3000㎞…초음속 ‘지옥 바람’ 부는 외계행성 포착 [아하! 우주]

    시속 3만3000㎞라는 무시무시한 속도로 바람이 부는 외계행성이 사상 처음으로 감지됐다. 최근 독일 괴팅겐대학 등 공동연구팀은 외계행성 ‘WASP-127b’의 제트기류를 분석한 연구결과를 국제천문학술지 ‘천문학과 천체물리학’(Astronomy & Astrophysics) 21일자에 발표했다. 지구에서 약 520광년 떨어진 WASP-127b는 ‘태양계의 큰형님’ 목성보다 30%나 지름이 큰 가스행성이다. 다만 질량은 목성의 16%에 불과해 지금까지 관측된 행성 중 가장 밀도가 낮다. 연구팀은 칠레에 위치한 유럽남방천문대(ESO)의 초거대망원경(VLT)으로 WASP-127b 적도에서 부는 강력한 바람을 측정하는데 성공했다. 그 결과 WASP-127b 적도 부근에서 시속 3만3000㎞라는 엄청난 속도의 제트기류가 감지됐는데 말 그대로 초음속 바람이다. 지구 상층대기에서 부는 제트기류가 시속 442㎞ 이상인 것과 비교하면 거의 75배나 강력한 바람인 것. 특히 해왕성 역시 고고도에서 시속 2000㎞의 바람이 부는데 WASP-127b와 비교해보면 그저 미풍인 셈이다. 논문의 주저자인 천체물리학자 리사 노르트만은 “WASP-127b 적도를 도는 초음속 제트기류는 다른 어떤 행성보다도 빨라 놀라울 정도”라면서 “지구의 제트기류가 기상패턴에 중요한 역할을 하기 때문에 외계행성에 대한 새로운 통찰력을 제공한다”고 설명했다. 연구팀에 따르면 WASP-127b는 2016년 처음 발견됐으며 흥미로운 몇가지 특징이 있다. 먼저 WASP-127b는 태양계에는 존재하지 않은 형태인 ‘뜨거운 목성’(hot Jupiter)형 행성이다. 뜨거운 목성은 우리의 목성과 같은 거대한 가스 행성이지만 모항성과 매우 가까운 탓에 표면온도가 뜨거워 이같은 별칭으로 불린다. 실제 WASP-127b는 지구와 태양거리 약 5%의 불과한 거리에서 4일마다 모항성을 공전한다. 다만 행성의 한쪽 면만 모항성을 향하고 있어, 한쪽 면의 대기온도는 1127°c에 달할 만큼 뜨겁고 다른 한쪽 면은 차갑다. 논문의 공동저자인 데이비드 콘트 박사는 “WASP-127b는 목성처럼 주로 수소와 헬륨으로 구성돼 있지만 대기에는 일산화탄소와 물과 같은 더 복잡한 분자의 흔적도 확인됐다”면서 “뜨거운 면에 강한 방사선을 받는다는 사실이 대기 역학의 주요 원인으로 추정된다”고 밝혔다.
  • 100년 전 허블이 발견한 ‘우주’…또 다른 변혁을 위한 지금 [이광식의 천문학+]​

    100년 전 허블이 발견한 ‘우주’…또 다른 변혁을 위한 지금 [이광식의 천문학+]​

    ​만약 101년 전으로 돌아갈 수 있다면 과학자들이 여전히 은하가 우리우주의 전부라고 생각했던 시대를 만날 것이다. 100년 전이라면 대부분 과학자들이 이것이 사실이 아니라는 데 동의할 것이다. 어딘가에서 인간은 우주가 우리은하보다 훨씬 크다는 것을 깨달았다. 망원경으로 볼 수 있는 나선 성운은 사실 그 자체로 다른 은하라는 사실을. 우주의 규모는 하룻밤 사이에 극적으로 확장되었다. 기록으로 보면 우리는 한 사람에게 감사해야 한다. 바로 에드윈 허블(1889~1953)이다. 그의 발견은 이를 위해 길을 닦아준 주변 사람들의 천재성이 있었기에 이뤄낼 수 있었다. “허블과 은하수 너머의 우주를 발견한 것을 낭만적으로 생각하기는 쉽지만, 그의 연구는 실제로 많은 사람들의 어깨 위에 있었다.” 지난 12~16일(현지시간) 미국 메릴랜드에서 열린 제245회 미국 천문학협회(AAS) 회의 기자회견에서 카네기 과학천문대의 천문학자 제프 리치는 이렇게 말했다. 리치의 발언은 상징적이었다. 1세기 전인 1925년 1월 1일, 워싱턴 DC에서 열린 제33회 AAS 회의에서 허블의 연구가 공식 발표됐기 때문이다. 허블이 어깨를 가장 많이 딛고 섰던 두 사람은 헨리에타 스원 리빗과 할로 셰플리였다. 우주의 무한 확장 발견한 허블과 그의 조력자들​리빗은 하버드대학 천문대에서 하버드 망원경으로 촬영한 사진판을 분석하는 임시직 ‘컴퓨터’로 일했다. 특히 소마젤란운과 대마젤란운의 이미지를 면밀히 조사했고, 그 안에서 1800개 변광성(밝기가 변하는 별)을 식별해냈다. ​리빗은 1908년과 1912년에 쓴 두 논문에서 변광성 중 다수가 독특한 주기-광도 관계를 가지고 있다는 것을 증명해냈다. 그녀는 별이 수축하고 확장하면서 규칙적으로 맥동하고 더 밝고 희미하게 보이는 데 걸리는 시간은 별의 광도에 따라 달라진다는 것을 깨달았다. ​이것은 엄청난 발견이었다. 변광 주기와 절대광도 사이에 정확한 관계성을 가진 변광성(후에 세페이드 변광성이라는 이름이 붙었다)들을 연구하면서 별의 거리를 계산할 수 있기 때문이다. 오늘날에도 리빗의 주기-광도 관계는 과학자들이 우주의 거리를 측정할 때 사용하는 핵심 개념이다. 셰플리의 이야기로 넘어가면, ​허블의 발견에서 셰플리의 역할을 감안할 때 그가 은하수 너머에 아무것도 없다고 믿었다는 것은 아이러니하다. 20세기 초에 망원경은 다른 은하의 개별 별을 분해할 만큼 강력하지 않았기 때문에 나선은하는 나선 얼룩처럼 보였고 나선성운이라고 불렸다. 셰플리는 나선성운이 단순히 은하수 가장자리에서 형성되는 별일 것이라고 추정했다. ​셰플리의 목표는 최초의 공식적인 우주 거리 사다리를 만들어 우리은하의 크기(그가 본 우주)를 측정하는 것이었다. 그 첫 단계가 우리은하에서 발견한 세페이드 변광성이었고, 다음은 RR형 변광성이었다. RR형은 세페이드 변광성과 비슷한 주기-광도 관계를 가진 또 다른 종류의 변광성이며, 세페이드 변광성과 비교하여 거리를 교정할 수 있다. 마지막으로 그는 RR형 라이레 변광성을 사용해 은하수 가장자리 근처의 일반 거대하고 밝은 별까지의 거리를 보정했다. ​셰플리는 우리은하의 크기가 30만 광년이고 우리 태양계가 은하 중심에서 5만 광년 떨어져 있다고 결정했다. 오늘날 정확한 크기와 거리가 각각 10만 광년과 2만 6000광년이라는 걸 알고 있지만, 셰플리의 추정치는 우주 거리 사다리를 처음 사용했다는 데 의미가 있다. ​셰플리는 1920년 4월 워싱턴 DC 국립과학아카데미에서 동료 천문학자 히버 커티스와 함께 나선성운의 본질에 대해 논의한 토론에도 참여했다. 커티스는 나선성운이 그 자체로 은하라고 주장한 데 이어, 우리은하는 단지 1만 광년 크기밖에 안된다고 주장했다. 셰플리는 그 반대를 주장했다. 캘리포니아 윌슨에서 이룬 엄청난 발견허블은 1919년 캘리포니아의 마운트 윌슨 천문대 팀에 합류했는데, 당시 세계에서 가장 큰 망원경이었던 후커 망원경이 첫 빛을 본 지 불과 2년 후였다. “허블의 획기적인 발견은 윌슨 산의 100인치 후커 망원경 덕분에 가능했다”고 말하는 리치는 “허블은 이 최첨단장비를 접할 수 있었기 때문에 자신의 발견을 이룰 수 있었다”고 했다. ​후커 망원경은 천문대 책임자인 조지 엘러리 헤일의 아이디어로, 캘리포니아의 자선가 존 후커가 4만 5000달러를 기부한 덕분에 나선성운 퍼즐을 풀기 위해 설계되었다. 이 과정에서 중요하게 등장하는 인물이 밀턴 휴메이슨이다. 휴메이슨은 천문대를 건설할 때 노새를 타고 건축 자재와 장비를 운반했다가 이후 천문대 관리인이 됐고, 이후 천문학자의 조수가 됐다. 휴메이슨은 박사 학위가 없었지만 많은 천문학적 발견을 했고 허블이 받는 공로의 상당 부분을 공유할 만하다. ​허블과 휴메이슨은 후커 망원경으로 나선성운을 관찰하기 시작했고 1923년에 안드로메다 나선성운인 메시에 31의 사진을 찍는 데 성공했다. ​리치는 이 장면을 “허블은 이 사진에 너무 흥분해서 흑백 유리판에 ‘VAR!’라고 썼다. 세페이드 변광성의 증거를 보았기 때문이다”라고 표현했다. “그 세페이드 변광성은 단순히 ‘V1’로 알려졌다. 그는 리빗과 셰플리가 한 작업 덕분에 그가 나선성운까지의 거리를 처음 측정할 수 있다는 것을 알았다”고 강조한다. ​허블은 93만 광년(실제로는 250만 광년)이라고 측정했지만 큰 오차에도 안드로메다 나선은 셰플리가 측정한 우리은하 크기인 30만 광년을 훨씬 초월하는 거리 너머 존재한다는 것을 분명히 보여주었다. 메시에 31은 나선성운이 아니라, 엄연한 나선은하였던 것이다. 허블은 셰플리에게 편지를 써서 자신의 발견 사실을 알렸다. 셰플리는 편지를 읽은 후 그것을 동료들에게 흔들어 보이며 그는 “이 편지가 내 우주를 파괴했다”고 탄식했다. 허블은 1924년 11월에 뉴욕타임스에 자신의 발견 소식을 ‘유출’했다. 그래서 다음해 1월 AAS에서 허블 자신이 아니라 천문학자 헨리 노리스 러셀이 발표한 프레젠테이션이 공식적인 공개가 되었다. 하지만 비공식적으로는 사람들이 이미 알고 있었다. 오늘날 우리는 우주가 은하, 은하수와 안드로메다와 같은 나선은하, 거대한 타원은하, 그리고 작은 왜소은하로 가득 차 있다는 것을 당연하게 여긴다. 마지막 계산으로는 관측 가능 우주에 최대 2조개 은하가 존재하는 것으로 추정된다. 그럼에도 리치는 허블의 획기적인 발견이 실제로 비교적 최근의 일이라는 게 놀랍다 말한다. ​“100년은 그렇게 길지 않다”고 리치는 말한다. 사실 세상에는 그보다 더 오래 산 사람들이 몇 명 있는데, 그들은 우리가 다른 은하가 존재한다는 것을 알기 전에 태어난 셈이다. “이것은 세상이 얼마나 많이 바뀌었는지, 그리고 발견이 얼마나 빨리 우리에게 다가올 수 있는지에 대한 교훈”이라고 리치는 덧붙였다. 허블 발표 이후 100년…인류의 발견은 어디까지​오늘날 허블이 ‘VAR!’이라고 휘갈겨 쓴 세페이드 변광성 V1을 포착한 사진건판은 귀중한 발견의 유물이며, 고고학자 인디아나 존스가 1000년 후에 찾아갈 만한 것이다. 다행히도 그것을 찾기 위해 그렇게 힘든 여정을 떠날 필요는 없다. ​일반적으로 이 판은 비공개로 보관되었지만, 현재 로스앤젤레스 카운티 박물관의 ‘무한을 매핑한다: 문화 간 우주론 전시회’에서 몇 달 동안 전시되고 있다. ​허블은 거기서 멈추지 않았다. 그 후 은하 형태를 분류하는 모양에 대한 허블 소리굽쇠 다이어그램을 창안해냈다. 허블소리굽쇠도에서 은하들은 형태학적으로 크게 타원은하, 나선은하, 불규칙은하로 나뉜다. 이 허블소리굽쇠도는 여전히 천문학자들에게 교육도구로 남아있다. 허블 소리굽쇠가 묘사하는 은하의 진화가 앞뒤로 바뀌었지만 전문 천문학자들은 여전히 ​​소리굽쇠의 초기·후기 은하라는 명명법을 사용한다. ​1929년에 허블은 우주의 다른 거의 모든 은하가 우리에게서 멀어지고 있다고 밝혔는데, 20세기 천문학의 최대 발견이라 일컬어지는 속도-거리에 대한 허블-르메트르 법칙이다. 우리는 은하수가 전부라고 생각하던 것에서 무한하고 확장되는 우주를 풀어내는 것으로, 우주를 바라보는 패러다임을 전환했다. 1915년에 발표된 알베르트 아인슈타인의 일반 상대성 이론에 이어, 닐스 보어가 이끄는 세계 최고의 물리학자들이 양자 물리학의 영역을 알아내던 거의 같은 시기에, 그것은 우주에 대한 우리의 현재 이해를 형성한 과학의 변혁적 시대의 초석이었다. ​암흑물질, 암흑 에너지, 중력의 양자 이론에 대한 탐구, 허블 텐션, 빅뱅의 원인과 같은 새로운 미스터리가 물리학자들을 당혹스럽게 만들면서 지금은 1세기 전과 유사한 과학의 또 다른 변혁을 위한 좋은 시기가 될 것이다.
  • 아제르바이잔 해안 ‘유령섬’ 1년 만에 사라진 이유는

    아제르바이잔 해안 ‘유령섬’ 1년 만에 사라진 이유는

    마치 유령처럼 카스피해 한복판에 나타났다 사라진 섬의 ‘정체’가 공개됐다. 미국항공우주국(NASA)이 공개한 사진은 아제르바이잔 해안에서 일시적으로 생겨난 섬이 어느 순간 사라져 있는 모습을 담고 있다. 일명 ‘유령섬’의 위치는 아제르바이잔 동부 해안에서 약 25㎞ 떨어진 바다 한복판으로, 2023년 2월 처음 모습을 드러냈다. 유령섬의 모습은 NASA 지구관측위성인 랜드샛 8호와 9호가 촬영했다. 2023년 2월 확인된 유령섬의 폭은 약 400m로 추정됐다. 그러나 1년여가 지난 2024년 12월, 섬은 온데간데없이 사라져 있었다. NASA는 “해저 진흙화산이 강하게 분화할 때, 지하의 압력이 모여 가스와 퇴적물을 표면으로 분출한다. 시간이 경과하면서 퇴적물이 바닷물에 의해 상승과 하강을 반복하다가 유령섬을 만들어낸다”고 설명했다. 이어 “2022년 11월 초까지는 ‘유령섬’이 수면 아래에만 있다가 이듬해 2월 퇴적물 기둥이 상승하면서 수면 위로 모습을 드러냈다”면서 “2024년 말이 됐을 때 이 유령과 같은 땅은 다시 완전히 침식돼 시야에서 사라졌다”고 덧붙였다. 유령섬을 만들어낸 해저 화산의 이름은 ‘쿠마니뱅크 진흙화산’이다. 진흙화산은 용암 대신 진흙과 가스를 분출한다. 쿠마니뱅크 진흙화산은 1861년 최초로 분화한 뒤 인근에 일시적인 섬을 만들어내고 있으며, 현재도 인류와 과학이 알아채지 못하는 새 여러 유령섬이 태어났다 사라지기를 반복하고 있다. 이번에 유령섬이 발견된 아제르바이잔은 전 세계에서 가장 많은 진흙화산을 보유한 국가로, 그 수가 약 400개에 달한다. 아제르바이잔의 진흙화산은 카스피 분지와 연결돼 메탄과 같은 가연성 가스를 다량 방출하며, 독특한 경관을 만들어내기도 한다. 진흙화산을 통해 만들어진 유령섬들은 불안정한 퇴적물로 이뤄진 탓에, 자연적인 침식 과정 및 해양 조건에 따라 시간이 지나면 부서지고 사라진다. 호주 애들레이드대학 물리학자인 마크 팅게이 박사는 현지에서 호주에서 열린 지질학회 세미나에서 “진흙화산은 기이하면서도 놀라운 특징을 가지고 있지만, 아직까지 밝혀지지 않은 부분이 많다. 추가적인 연구가 필요하다”고 강조했다.
  • 유령처럼 나타났다 사라졌다…‘있었는데 없어진’ 유령섬의 정체 공개[포착]

    유령처럼 나타났다 사라졌다…‘있었는데 없어진’ 유령섬의 정체 공개[포착]

    마치 유령처럼 카스피해 한복판에 나타났다 사라진 섬의 ‘정체’가 공개됐다. 미국항공우주국(NASA)이 공개한 사진은 아제르바이잔 해안에서 일시적으로 생겨난 섬이 어느 순간 사라져 있는 모습을 담고 있다. 일명 ‘유령섬’의 위치는 아제르바이잔 동부 해안에서 약 25㎞ 떨어진 바다 한복판으로, 2023년 2월 처음 모습을 드러냈다. 유령섬의 모습은 NASA 지구관측위성인 랜드샛 8호와 9호가 촬영했다. 2023년 2월 확인된 유령섬의 폭은 약 400m로 추정됐다. 그러나 1년여가 지난 2024년 12월, 섬은 온데간데없이 사라져 있었다. NASA는 “해저 진흙화산이 강하게 분화할 때, 지하의 압력이 모여 가스와 퇴적물을 표면으로 분출한다. 시간이 경과하면서 퇴적물이 바닷물에 의해 상승과 하강을 반복하다가 유령섬을 만들어낸다”고 설명했다. 이어 “2022년 11월 초까지는 ‘유령섬’이 수면 아래에만 있다가 이듬해 2월 퇴적물 기둥이 상승하면서 수면 위로 모습을 드러냈다”면서 “2024년 말이 됐을 때 이 유령과 같은 땅은 다시 완전히 침식돼 시야에서 사라졌다”고 덧붙였다. 유령섬을 만들어낸 해저 화산의 이름은 ‘쿠마니뱅크 진흙화산’이다. 진흙화산은 용암 대신 진흙과 가스를 분출한다. 쿠마니뱅크 진흙화산은 1861년 최초로 분화한 뒤 인근에 일시적인 섬을 만들어내고 있으며, 현재도 인류와 과학이 알아채지 못하는 새 여러 유령섬이 태어났다 사라지기를 반복하고 있다. 이번에 유령섬이 발견된 아제르바이잔은 전 세계에서 가장 많은 진흙화산을 보유한 국가로, 그 수가 약 400개에 달한다. 아제르바이잔의 진흙화산은 카스피 분지와 연결돼 메탄과 같은 가연성 가스를 다량 방출하며, 독특한 경관을 만들어내기도 한다. 진흙화산을 통해 만들어진 유령섬들은 불안정한 퇴적물로 이뤄진 탓에, 자연적인 침식 과정 및 해양 조건에 따라 시간이 지나면 부서지고 사라진다. 호주 애들레이드대학 물리학자인 마크 팅게이 박사는 현지에서 호주에서 열린 지질학회 세미나에서 “진흙화산은 기이하면서도 놀라운 특징을 가지고 있지만, 아직까지 밝혀지지 않은 부분이 많다. 추가적인 연구가 필요하다”고 강조했다.
  • [책꽂이]

    [책꽂이]

    관계도시(박희찬 지음, 돌베개) 덴마크에 살며 한국을 오가면서 활동하는 건축가인 저자가 가구, 건축, 도시 등을 소재 삼아 덴마크와 한국 사회의 특징과 차이를 22편의 글로 소개한다. 저자는 코펜하겐 공동주택은 덴마크가 추구하는 상생주의와 공동체주의를 대변한다고 설명한다. 덴마크의 일상이 조직문화로 표현된 것이 19세기 이후 사회시스템 중추를 담당하는 협동조합이다. 자동차보다 자전거가 중심인 도시가 된 이유, 공동의 작은 공원 등 덴마크의 삶을 통해 우리 삶과 일상을 되돌아본다. 316쪽. 2만 5000원. 북일외교회고록(야마모토 에이지 지음, 권병덕 옮김, 마르코폴로) 북한이 미사일을 쏴도 우리나라는 미동이 없지만 일본의 반응은 사뭇 다르다. 미사일 상당수가 일본 영토를 지나가기 때문이다. 1980년 일본 외무성에 들어간 뒤 한국에서 어학연수를 하고 줄곧 한국과 북한 관련 업무를 해 온 전직 관료인 저자가 외교 무대 뒤 현장으로 안내한다. 북일 국교 정상화 교섭부터 일촉즉발 1차 핵 위기 그리고 이후 한일 관계, 2차 핵 위기와 6자회담, 고이즈미 준이치로 방북 등 정치 주도로 진행된 북일 외교를 소개한다. 276쪽. 2만원. 내가 의대에서 가르친 거짓말들(로버트 러프킨 지음, 유영훈 옮김, 정말중요한) 의료 영양사 어머니 덕에 콜레스테롤이 많은 노른자를 제거한 오믈렛을 먹고 저지방 고탄수화물 식사를 했던 저자. 의대 교수가 됐지만 당뇨, 고혈압, 이상지질혈증 등으로 죽음의 문턱까지 간 뒤 왜 이런 병들이 생겼는지 하나하나 점검했다. 저자는 수많은 논문과 통계 자료 그리고 정확하게 검증된 최신 의학적 사실들로 만성질환의 진짜 원인으로 대사 건강 불균형을 지목하고 제대로 된 건강에 대해 알아야 한다고 강조한다. 412쪽. 2만 2000원. 불안한 사람들을 위한 천체물리학(리치아 트로이시 지음, 김현주 옮김, 플루토) 소행성과 지구 충돌이라든가 지구 근처 초신성 폭발, 블랙홀 생성 등 우주 재난이 일어나면 어떻게 될까. 천체물리학자이자 판타지 소설 작가인 저자가 13가지 우주 재난 시나리오를 소개한다. 과학적 지식과 베스트셀러 작가로서 이야기 솜씨를 결합해 재미있게 풀어냈다. 저자는 사실 13개 시나리오는 크게 걱정하지 않아도 된다며 당장 생존을 위협하는 재난은 지구환경을 위기로 몰아가는 ‘우리들’이라고 강조한다. 216쪽. 1만 8000원.
  • 네이처가 선정한 올해의 10대 인물, 이런 사람들이…

    네이처가 선정한 올해의 10대 인물, 이런 사람들이…

    가장 정교한 시계 제작자, 달의 수호자, 과학 사기 폭로자, 바이러스 사냥꾼, 기후 기사단…. 과학 저널 ‘네이처’는 ‘올해 과학계를 빛낸 10명’을 선정해 10일 발표했다. 네이처가 선정한 10대 인물은 과학적 성과를 올려 주목받은 인물 이외에도 글로벌 과학 이슈에 영향을 미친 사람들까지 포함됐다. 콩고민주공화국 국립 생의학 연구소 소속 역학자인 ‘바이러스 사냥꾼’ 플라시데 음발라 박사는 콩고에서 치명적인 천연두가 발생하고, 이 바이러스가 국경을 넘어 확산할 수 있다는 것을 정확히 예측하고, 치명적 감염병의 확산을 막기 위해 국제적 차원에서 신속한 대응이 필요하다고 촉구함으로써 공중 보건에 중요한 역할을 해 올해의 인물로 꼽혔다. 가짜 논문으로 과학 데이터베이스를 오염시키는 표절자와 논문 공장 등을 폭로해 과학 출판 분야의 부정행위를 근절하는 운동에 앞장서고 있는 독일 베를린 자유대 동유럽연구소 안나 아발키나 연구원도 올해의 10대 인물로 꼽혔다. 아발키나 연구원은 이런 활동 때문에 러시아 정부의 감시 대상에 오르기도 했다. 중국 칭화대 의대 및 상하이 해군 의과대 소속 후지 쉬 교수는 건강한 사람의 면역세포를 유전자 가위 기술을 이용해 편집한 뒤 환자에게 주입해 자가면역 질환을 치료하는 데 성공해 올해의 인물로 선정됐다. 쉬 교수가 만든 기술은 자가면역질환은 물론 암 치료에도 도움을 줄 것으로 기대되고 있다. 독일 국립 측정 표준연구소의 물리학자 에케하르트 페이크 박사는 토륨 229 원소의 핵 진동이 기반하는 일명 ‘원자핵 시계’의 아이디어를 제시해 주목받았다. 2001년 페이크 박사는 현재 원자시계보다 더 정밀한 원자핵 시계 개념을 제시했다. 핵시계를 만들려는 시도는 있었지만, 번번이 실패했다. 그러다, 지난 11월 미국 콜로라도주립대 연구팀이 이론으로만 가능했던 방사성 토륨 원자를 이용한 초정밀 핵시계를 만드는 데 성공하면서 페이크 박사는 과학계의 주목을 받았다. 중국 항천국 소속 지질학자 리 춘라이 박사는 달과 화성 토양 분석 전문가로 중국의 달 탐사선 창어 6호가 인류 최초로 수집해 지난 6월 지구로 귀환한 달 뒷면 토양 표본을 처음 분석한 연구자로 올해의 인물로 꼽혔다. 구글 딥마인드의 레미 람 연구원은 기존 기후 모델링보다 더 빠르고 정확하게 날씨를 예측할 수 있는 인공지능을 개발한 점에 대해, 웬디 프리드먼 미국 시카고대 교수는 지난 4월 제임스웹 우주망원경(JWST) 관측 데이터로 새로운 허블 상숫값을 계산해 우주 팽창 속도에 대한 오랜 질문을 해결할 수 있을 것으로 기대되면서 올해 10대 인물로 꼽혔다. 한편, 21년 만에 대학원생과 박사후과정 연구원에 대한 최대 규모의 투자를 끌어낸 캐나다 토론토대 박사과정 연구원이자 ‘우리 과학을 지원하자’라는 조직을 이끄는 케이틀린 카라스, 64세 이상 스위스 여성 2000명이 정부를 상대로 소송을 해 기후 변화에 대해 조처하지 않은 것은 명백한 인권 침해라는 판결을 끌어낸 코르델리아 베어 변호사, 학생 주도 혁명 이후 방글라데시 임시 정부 수반이 된 노벨평화상 수상자 무함마드 유누스도 네이처가 선정한 10대 인물에 포함됐다.
  • 해가 지면 ‘백색의 향연’… 스톡홀름에 한강의 문장을 수놓다

    해가 지면 ‘백색의 향연’… 스톡홀름에 한강의 문장을 수놓다

    건물 외벽에 역대 여성 수상자들한강과 소설 ‘흰’ 문장도 나란히노벨박물관 들어서면 기증 찻잔‘한강 작품서 영감’ 흑백 드레스엔침묵·역사·애도 등 상징하는 구멍기념품점에선 故김대중 엽서도 스톡홀름의 겨울은 지독히도 해가 짧다. 오후 2시부터 어둑어둑해지더니 4시만 돼도 한밤중처럼 캄캄하다. 이토록 우중충한 스톡홀름의 밤을 소설가 한강(54)의 문장이 ‘희게’ 밝혔다. “하얀 것은 본래 아무것도 아니지만, 그 아무것도 아닌 것 속에 모든 것이 들어 있다.”(White, by nature is nothing at all, but within that nothingness, everything exists.) 지난 6일(현지시간) 스웨덴 수도 스톡홀름 시청 건물 외벽에 떠오른 한강의 소설 ‘흰’ 속 문장이다. 이날 점검을 마친 뒤 7일 본격적으로 ‘노벨 위크 라이트’(노벨 주간 조명)의 불이 켜졌다. 매년 새로운 주제를 담은 여러 예술가의 작품들로 스톡홀름 곳곳에 있는 건물 벽에 미디어 파사드를 쏜다. 점등은 오는 15일까지 이어진다. 스톡홀름 시청은 세계에서 가장 아름다운 시청으로 꼽히는 관광 명소다. 이 건물 외벽에 레이저로 쏜 동영상 ‘리딩 라이트’와 시청 맞은편 부두에 설치된 ‘돔 아데톤’이 노벨 주간 조명의 백미다. 역대 노벨상 여성 수상자들의 업적을 기리는 내용의 미디어 파사드에서 한강은 다른 수상자들과 함께 어깨를 나란히 하며 도시의 긴긴밤을 비췄다. 국제적인 디자인 스튜디오 ‘레 아틀리에 비케이’(BK)가 모두 65명인 여성 노벨상 수상자에게 경의를 표하기 위해 제작한 9분짜리 동영상에 한강은 두 차례 모습을 드러냈다. 2018년 노벨문학상을 받은 폴란드 소설가 올가 토카르추크의 얼굴도 보인다. 123년 노벨상 역사에서 여성의 수상은 모두 66회였다. 그중 두 차례는 폴란드 출신 프랑스 과학자 마리 퀴리가 받았다. 스웨덴 왕립 공과대학 건축학과에서 제작한 돔 아데톤에는 1909년 셀마 라겔뢰프부터 올해 한강까지 여성 노벨문학상 수상자 18명의 초상이 걸렸다. 스테인드글라스 느낌이다. 1901년부터 올해까지의 노벨문학상 수상자 121명 중 여성은 겨우 18명, 이 중 아시아 여성 수상자로는 한강이 유일하다. 노벨 재단이 여성 수상자들의 업적을 특별히 기리는 것도 성비 불균형에 대해 인지하고 있기 때문이다. 신시가지 중심부에 있는 시청을 뒤로하고 감라스탄(구 시가지)으로 발길을 돌리면 노벨박물관이 웅장한 자태를 드러낸다. 성탄절을 앞두고 박물관 앞에는 크리스마스 마켓이 열려 인파로 붐볐다. 지난 6일 한강의 노벨문학상 수상 기자회견이 열렸던 곳이다. 노벨박물관 입장권 가격은 성인 기준 140스웨덴크로나로 한화로는 약 1만 8000원이다. 우크라이나인의 경우 여권을 보여 주면 무료 입장할 수 있다는 안내도 있었다. 최근 수년간 전쟁으로 고통받고 있는 우크라이나를 향한 노벨 재단의 배려로 보인다. 입구에 들어서자마자 6일 한강이 이곳에 기증한 작은 찻잔이 보였다. 한강은 최근작 ‘작별하지 않는다’를 쓰면서 이 찻잔에 홍차를 자주 우려내 마셨다고 한다. 그는 “하루에 예닐곱 번, 이 작은 잔의 푸르스름한 안쪽을 들여다보는 일이 당시 내 생활의 중심이었다”고 했다. 기념품점 바로 앞에는 역대 노벨상 수상자들의 서명이 적힌 의자도 전시돼 있다. 한강의 서명은 노르웨이 작가 욘 포세(2023), 프랑스 소설가 아니 에르노(2022)의 서명과 나란히 쓰여 있었다. 한강의 찻잔을 비롯해 이곳에는 노벨상 수상자들이 기증한 다양한 소장품들이 전시됐다. 칠레 국민 시인 파블로 네루다(1971)의 담배 파이프, 소설 ‘눈먼 자들의 도시’를 쓴 포르투갈의 거장 조제 사라마구(1998)의 안경 등을 통해 역사에 이름을 남긴 인물들이 어떻게 일상을 살아갔는지 엿볼 수 있었다. 스웨덴 베크만스 디자인대 학생들이 올해 노벨상 수상자들의 업적에서 영감을 받아 디자인한 드레스도 재미있는 볼거리였다. 한강의 작품에서 받은 영감으로 제작된 드레스는 마네킹의 몸통을 거의 다 드러내는 가운데 흰색과 검은색이 대비를 이루고 있다. 드레스 아래쪽 주름 사이에는 한강의 작품 속 문장들이 영어로 들어가 있다. 드레스 곳곳에는 불에 탄 구멍 같은 것도 보인다. 디자이너들은 침묵, 기억, 역사, 트라우마, 애도 등 한강 소설 전반에 흐르는 모티프에서 아이디어를 가지고 왔다고 밝혔다. 기념품점에는 세계 각국 노벨상 수상자들의 저서와 함께 다양한 상품들이 관광객을 유혹하고 있었다. 알프레드 노벨의 얼굴이 새겨진 노벨상 메달 모양의 초콜릿이 가장 인기가 많았다. 역대 노벨상 수상자의 얼굴이 새겨진 엽서도 관심을 끌었는데 2000년 한국인 최초로 노벨상(평화상)을 받은 김대중 전 대통령의 초상 엽서도 있었다. 알베르트 아인슈타인(1921년 물리학상), 에르빈 슈뢰딩거(1933년 물리학상) 등 세기의 물리학자들과 함께 라빈드라나트 타고르(1913년 문학상), T S 엘리엇(1948년 문학상), 오에 겐자부로(1994년 문학상), 모옌(2012년 문학상) 등도 눈에 띄었다. 한강의 엽서는 아직 없었다. 기념품점에 따르면 모든 노벨상 수상자의 엽서를 제작하는 것은 아니다. 소위 ‘잘 팔리는’ 수상자들의 엽서를 가져다 놓는단다. 기념품점 직원은 “내년에는 만들어질 수도 있는데 확실하진 않다”고 했다.
  • 인간이 지구서 가장 성공한 생물종으로 남은 까닭은

    인간이 지구서 가장 성공한 생물종으로 남은 까닭은

    재러드 다이아몬드의 ‘총, 균, 쇠’는 “왜 세계의 일부 문화는 다른 문화보다 더 빠른 발전을 이룩했는가”라는 질문을 던지고 총, 균, 쇠로 대표되는 무기와 환경을 그 답으로 제시한다. 유발 하라리의 ‘사피엔스’는 “우리는 누구이며, 어디서 왔고, 어떻게 막대한 힘을 갖게 됐는가”라는 질문을 던지고 하나의 거대한 서사를 통해 그 답을 찾는다. ‘빅 히스토리’로 대표되는 거대 서사는 읽기에는 재미가 있지만 과연 인류의 모든 역사를 지리, 문화, 제도 등 한 가지만으로 설명할 수 있겠느냐는 의문을 갖게 한다. 빅 히스토리 방식의 서사가 인기가 있는 이유는 사람이 기본적으로 복잡한 설명을 싫어한다는 특성 때문이다. 물리학자들이 자연의 모든 현상을 하나로 설명할 수 있는 대통합 이론을 찾고, 과학자들이 자연현상을 수학식으로 표현하려고 하는 것과 비슷하다. 영국 런던정치경제대(LSE)에서 경제심리학, 발달경제학, 데이터 과학을 가르치는 저자 역시 “왜 보츠와나가 남아프리카공화국보다 부패가 적고 여러 지표에서 더 성공적일까”와 같은 간단한 질문으로 시작한다. 대신 하나의 시각이 아니라 경제학, 정치학, 생물학, 철학, 심리학, 심지어 수학까지 다양한 방식으로 인간과 사회를 분석한다. 그래서 나온 결론이 인간은 에너지, 혁신, 협력, 진화라는 네 가지 삶의 법칙으로 움직인다는 것이다. 이 네 가지 법칙이야말로 인간을 지구에 등장하게 하고, 지구상에서 가장 성공한 생물종으로 자리잡게 만든 원리라고 저자는 강조한다. 4대 법칙 중 가장 토대가 되는 것은 에너지인데, 생산성을 유지하면서 에너지 효율까지 높이기 위한 유일한 방법은 핵융합이라고 저자는 주장한다. 또 언제 완성될지 모르지만, 그 시간을 단축하기 위해 혁신-협력-진화 법칙이 제대로 작동할 수 있도록 집단 지성을 활용할 필요가 있다고 제안한다.인류 문명 4대 법칙을 끌어내는 1부는 무난했지만, 이를 적용하는 2부는 좀 당혹스럽다. 이쯤 되면 “삶의 법칙은 모든 것을 지배한다”는 생각 자체가 무리수가 아니었나 싶은 생각이 들기도 한다. 읽는 재미는 있지만 용두사미의 느낌을 지울 수는 없다.
  • 시속 320만㎞로 충돌하는 은하, 어떻게 될까 [달콤한 사이언스]

    시속 320만㎞로 충돌하는 은하, 어떻게 될까 [달콤한 사이언스]

    시속 320만㎞로 이동하는 은하끼리 충돌하면 어떤 일이 벌어질까. 영국 하트퍼드셔대, 노팅엄대, 네덜란드 그로닝언대, 더럼대 등 영국, 네덜란드, 스페인, 스웨덴, 미국, 독일, 이탈리아, 프랑스, 뉴질랜드 9개국 34개 대학과 연구기관으로 구성된 공동 연구팀은 지구상 가장 강력한 망원경으로 알려진 윌리엄 허셜 망원경(WHT)을 이용해 ‘스테판의 5중주’ 은하단에서 빠르게 움직이는 은하끼리 충돌하는 현상을 발견했다고 26일 밝혔다. 이 연구 결과는 천문학 분야 국제 학술지 ‘왕립 천문학회 월간 보고’ 11월 21일 자에 실렸다. WHT는 스페인 라팔마섬에 있는 망원경으로 4.2m 구경의 가시광 및 근적외선 대역 반사망원경으로 아이작 뉴턴 망원경 군(群) 중 하나다. WHT로 우리은하 중심 초대질량 블랙홀 존재 증거 포착, 감마선 폭발체의 첫 가시광 관측 등을 성공했다. 최근에는 여기에 ‘Weave’라는 초고속 매핑 장치가 설치됐다. Weave는 시간당 1000여 개의 별을 추적해 구성, 속도, 방향, 나이 등 알아낼 수 있다. 총 500만 개의 별 리스트를 만들기 위해 설치된 Weave는 수십억 년에 걸쳐 생성된 은하수 기원을 밝혀내는 작업을 하고 있다. 연구팀이 이번에 은하의 충돌을 관측한 지점은 스테판의 5중주다. 1877년 발견된 스테판의 5중주는 5개의 은하가 모여 아름다운 풍경을 이룬다는 의미로 붙여진 이름으로 은하의 충돌과 결합을 볼 수 있어 과학자들이 주목하고 있는 우주 지점이다. 스테판의 5중주 중 4개의 은하는 서로 가까이에서 중력으로 묶여 가까워지고 멀어지기를 반복하는데 이들은 지구에서 약 2억 9000만 광년, 나머지 1개는 4000만 광년 떨어져 있다. 연구팀은 스테판의 5중주를 관통하는 은하 ‘NGC 7318b’를 발견하고, 여기서 은하끼리 충돌할 때 발생하는 현상 중 하나인 ‘제트기 음파 붐’과 비슷한 강력한 충격파의 흔적을 관측했다. 즉, 충격파의 흔적은 초음파가 은하 매질 원자를 붕괴시켜 전하를 띤 가스의 빛 흔적을 남기게 되는데 이를 찾아낸 것이다. 연구를 이끈 영국 옥스퍼드대 천체물리학자인 게빈 달튼 교수는 “이번 연구 결과는 그동안 우리 관측 능력의 한계를 벗어나 있던 희미한 은하의 형성과 진화 과정을 파악하게 했다”라며 “우주 진화와 생성에 대한 이해를 혁신적으로 발전시킬 것”이라고 설명했다.
  • 과학기자協, 올해의 과학자상에 김창영·백민경·조일주 교수 선정

    과학기자協, 올해의 과학자상에 김창영·백민경·조일주 교수 선정

    한국과학기자협회(회장 유용하)가 ‘기자가 뽑은 올해의 과학자상’ 수상자로 김창영 서울대학교 물리천문학부 교수, 백민경 서울대학교 생명과학부 교수, 조일주 고려대학교 의과대학 교수가 선정했다고 25일 발표했다. 고체물리학자인 김창영 교수는 지난해 상온 초전도체 논란 때 ‘LK-99 검증위원회’ 위원장을 맡아 과학적 팩트체크에 앞장서고 언론 소통에 이바지해, 과학자로서 책임과 전문가 집단의 중요성을 알렸다는 점에서 높은 평가를 받았다. 백민경 교수는 올해 인공지능으로 단백질 예측한 업적으로 노벨화학상을 수상한 데이비드 베이커 미국 워싱턴대 교수의 수제자로 AI로 단백질 구조와 상호작용, 결합구조 예측 등 생체분자 기능에 대한 이해를 확장하는 선도적 연구를 수행하고 있다. 과학 저널 ‘사이언스’에서 선정한 ‘올해의 혁신 연구’로 선정되기도 하는 등 학계와 산업계에 큰 반향을 일으켰다는 점에서 심사위원들의 눈길을 사로잡았다. 또 조일주 고려대 의대 교수는 브레인칩 및 뉴럴 인터페이스 시스템의 연구개발과 광자극용 브레인칩 상용화 등 국내 뇌공학 기술 경쟁력 확보에 주력해 왔으며 대중 강연과 언론 인터뷰, 관련 위원회 활동으로 뇌 과학의 대중화와 정책 발전에도 이바지한 점을 인정받아 수상자로 선정됐다. 이와 함께 ‘대한민국과학기자상’에는 박상욱 JTBC 기자와 양훼영 YTN사이언스 기자가 공동 수상했으며 하반기 과학 취재상에는 과학계 인재의 국외 유출문제를 짚은 고재원 매일경제 기자, 한국 R&D 성과에 대한 국제적 평가와 국내 과학계 문제를 짚은 최지원 동아일보 기자, 디지털 치료제의 시장성과 전망을 분석하고 국내 기업의 성장 기회, 제도적 지원을 제시한 조선비즈 사이언스조선부 의학바이오팀(이정아·허지윤)에 돌아갔다. 머크의학기자상은 희소병 환자들의 의료비 문제를 짚은 SBS 정책사회부 취재팀(박하정·조동찬)과 의정 공백을 계기로 한국 의료가 나갈 방향을 심층 취재한 조선일보 사회정책부 취재팀(조백건·안준용·오경묵·오유진·정해민)이 수상했다. 또, ‘과학커뮤니케이터상’에는 장혜리 아트앤사이언스 대표, 강태우 대구경북과학기술원(DGIST) 부설 한국뇌연구원 책임행정원, 오은성 한국여성과학기술인육성재단 대외협력홍보팀장, 이현정 한국원자력연구원 미디어소통팀장, 정지호 한국재료연구원 대외협력실 선임행정원이 받았다. 심사위원장을 맡은 유현재 서강대학교 신문방송학과 교수는 “예년에 비해 많은 기사와 보도, 실적과 활동들이 출품되었기 때문에 심사위원들도 신중하고 꼼꼼하게 심사했다”며 “과학 언론상 주인공들의 활약에 대한 가치와 의미는 너무나 놀랍고 뛰어나 그들의 진지한 노력을 접하며, 스스로 많이 배웠다”는 심사 소감을 밝혔다. ‘2024과학언론상’ 시상식은 오는 29일 서울 중구 롯데호텔 서울 소공동점에서 개최되는 ‘2024 과학언론의 밤’ 행사와 함께 열린다.
  • 태양계 형성 비밀 풀 거대 행성 발견했다 [달콤한 사이언스]

    태양계 형성 비밀 풀 거대 행성 발견했다 [달콤한 사이언스]

    미국, 스페인 공동 연구팀은 생성된 지 오래되지 않은 젊은 별을 통과하는 거대 행성을 발견했다고 23일 밝혔다. 이번 발견은 지금까지 확인된 가장 어린 ‘통과 행성’이다. 이 연구에는 채플힐 노스캐롤라이나대, 매사추세츠공과대(MIT) 천체물리학·우주 연구소, 애리조나대 스튜워드 천문대, 텍사스 오스틴대, 항공우주국(NASA), NASA 에임스 연구센터, 하버드-스미스소니언 천체물리학 연구센터, 뉴멕시코대, 보스턴대 천체물리학 연구소, 콜로라도 볼더대 대기·우주 물리학 연구실, 다트머스대, 프린스턴대, 우주 망원경 과학센터, 외계 지적 생명체 탐사(SETI) 연구소, 스페인 카나리아 제도 천체물리학연구소(IAC), 라 라구나대 물리학자, 천문학자들이 참여했다. 이 연구 결과는 과학 저널 ‘네이처’ 11월 21 자에 실렸다. 지금까지 천체물리학자와 천문학자들은 1000만 년~4000만 년 사이의 나이를 가진 별들 주위에서 12개가량의 ‘통과 행성’을 발견했다. 천문학에서 ‘통과’는 특정 위치에 있는 관측자에게 한 천체가 더 멀리 있는 다른 천체 앞을 지나가는 것처럼 보이는 현상을 말한다. 통과 행성은 별(항성)과 관측자 사이를 지나가는 행성을 말한다. 예를 들어 지구와 태양 사이의 통과 행성은 수성과 금성이다. 그런데 지금까지는 별보다 어린 통과 행성을 발견한 적은 없었다. 이는 행성이 완전히 형성되지 않았거나, 그런 행성을 관측하는 우리 시야를 새로 형성된 별 주위를 둘러싼 가스와 먼지 고리인 ‘잔여 원시 행성 원반’이 차단했기 때문으로 추정된다. 연구팀은 NASA에서 운영하는 탐사 위성 ‘TESS’에서 수집한 데이터를 활용했다. TESS는 천체면 통과 외계 행성 탐색 위성(Transiting Exoplanet Survey Satellite)을 말한다. 케플러 우주 망원경보다 400배 더 넓은 우주를 탐색하면서 2만개의 외계 행성을 찾는 목표를 갖고 있다. 연구팀은 이를 통해 지구와 비교적 가까운 160파섹(pc) 떨어진 300만년 된 젊은 별 ‘IRAS 04125+2902’을 관찰했다. 1파섹은 약 3.26 광년으로 30조 9000억㎞ 정도다. 160파섹이면 약 521광년에 해당한다. IRAS 04125+2902을 둘러싼 원시 행성 원반은 측면이 아닌 거의 정면을 보이는 방식으로 정렬돼 있고, 내부 원반은 고갈된 상태로 확인됐다. 이런 특징 때문에 통과 행성 ‘IRAS 04125+2902 b’를 관측하는 데 성공했다. 이 행성은 8.83일의 공전 주기를 가지며, 지구보다 10.7배 큰 반지름과 목성 질량의 30%를 가진 것으로 나타났다. 연구를 이끈 앤드류 만 채플힐 노스캐롤라이나대 교수(행성 진화)는 “이번에 관측된 통과 행성은 주계열별 주위를 도는 슈퍼 지구 또는 준 목성형 행성으로 보인다”라며 “행성과 주계열 별의 나이가 어리고, 원반의 정렬 상태가 잘못돼 있고, 지구와 상대적으로 가까운 거리를 고려할 때 행성 형성 초기 단계를 연구하는 데 도움이 될 것”이라고 말했다.
  • 역제곱의 법칙, ‘재미’를 찾는 나와 사건의 거리 [이광식의 천문학+]

    역제곱의 법칙, ‘재미’를 찾는 나와 사건의 거리 [이광식의 천문학+]

    재미란 무엇인가. 우리가 일상생활 속에서 자주 쓰는 말 ‘재미’는 원래 ‘양분이 많고 좋은 맛’이라는 한자어 ‘자미’(滋味)에서 온 것이다. 국어사전에서 찾아보면 ‘아기자기하게 즐거운 기분이나 느낌’이라고 풀이한다. 하지만 재미는 이처럼 단순한 개념이 아니다. 부연하자면, 재미란 어떠한 것에 대한 흥미이고 그것에 관한 일종의 만족감이자, 마음이 편한 기쁨, 즐거움, 떠들썩한 유쾌함 등으로 정의된다. 이런 재미는 사람의 수많은 육체적-정신적 활동에서 비롯된다. ​인류는 본능적으로 재미를 추구해왔다. 춤과 노래, 축제와 게임 등이 그 대표적인 목록들이다. 이러한 성향을 유희정신이라고 하는데, 이처럼 뛰고, 소리치고, 노는 유희정신은 어린아이들의 행동에서 가장 선명하게 드러난다. ​아이들에게 재미는 놀이와 밀접한 관련이 있으며, 자연스럽고 창의적인 방식으로 재미를 추출하는 능력이 뛰어나다. 놀이는 즐거움을 누릴 수 있는 능력, 즉 잠시만이라도 무한히 즐길 수 있는 능력과 관련된다. ​독일의 시인 프리드리히 실러는 “인간은 놀이를 즐기고 있을 때만이 완전한 인간이 된다”고 말했다. 이렇게 유희는 인간 활동에서 커다란 부분을 차지하며, 인간의 가장 기본적 ·정신적 요소의 하나인 것이다. ​재미는 또한 사람들의 긴장을 푸는 데 도움이 되고 삶의 보람을 주기 때문에 때때로 ‘인생의 즐거움을 더하고’, ‘스트레스에 대한 완충 역할’을 하는 윤활유로 간주되며, 인간의 육체적-심리적 상태를 개선하는 데 큰 영향을 끼치기도 한다. 이 정도면 재미가 우리 삶에서 얼마나 중요한 요소인가를 알 수 있을 것이다. 우리가 추구하는 행복의 속고갱이가 바로 다름 아닌 재미라 할 수 있다. 그래서 일찍이 장자(BC 369-286)는 “인생은 한바탕 신명나게 잘 놀다 가는 놀이터”라고 ‘소요유(逍遙游)’편에서 설파했다. ​근엄한 유교문화 속에서 오래 몸담고 살아온 우리는 자칫 이 재미란 항목을 가벼이 취급하는 경향이 있는데, 이는 바람직한 태도라 하기 어렵다. 사람에게 행하는 어떤 교육도 재미가 없으면 임팩트가 없고 따라서 입력이 잘 안된다. 재미가 있을 때에야 비로소 사람은 그것을 잘 받아들이고 임팩트를 느끼며 자신을 변화시킬 수 있는 것이다. ​그러니 재미가 없는 영화, 재미없는 소설은 만들 것이 못되며 재미없는 강의나 수업은 하지 말아야 한다. ​ 재미있는 수학은 수포자를 줄일까​그러면 어떤 요소가 사람을 재미있게 하는 것일까. ​사람들이 재미를 느끼는 요소들을 들자면, 극적인 변화, 통찰과 개안(開眼)을 주는 것, 상상을 벗어난 것, 놀라운 반전 같은 것을 들 수 있다. ​재미는 또한 하나의 중요한 속성을 갖고 있는데 그것은 바로 역제곱 법칙이라는 것이다. 이 역제곱 법칙은 특정 물리량에 해당되는 정보가 보존되면서, 그 원인으로부터 정보가 3차원 공간을 퍼져나갈 때 만족하는 법칙이다. 예컨대 촛불을 2배 먼 거리에서 보면 그 밝기는 4분의1로 줄어든다. ​뉴턴의 만유인력 법칙이 대표적인 역제곱 법칙의 하나인데, 두 물체 m1, m2 사이에 작용하는 인력은 두 물체 사이 거리의 역제곱에 비례한다는 것이다. 재미 삼아 공식을 내려놓으면 다음과 같다. ​재미의 역제곱 법칙은 중력의 법칙처럼 ‘나’와 ‘사건’ 사이 거리의 역제곱에 비례한다. ​쉬운 예를 들어보자. 외신에 이런 뉴스가 떴다. ‘미국 앨라배마주의 흑인대학으로 알려진 터스키기 대학에서 10일 새벽(현지시간) 총격 사건이 발생해 1명이 숨지고 16명이 다쳤다고 AP 통신 등 미국 언론이 당국을 인용해 보도했다. ​일상사처럼 반복되는 미국의 총기 사건이 우리에게 어떤 관심을 불러일으킬까? 우리와는 지구 반대편에 있는 총기의 나라 미국에서 툭하면 벌어지는 사건이니 으레 그러려니 하고 넘어가는 게 대부분의 반응일 것이다. 하지만 만약 내가 사는 아파트 같은 동에서 살인사건이 일어났다면 누구나 신경을 곤두세우고 관심을 쏟을 것이 분명하다. 재미의 역제곱 법칙도 이와 다를 것이 없다. 어떤 사건이 나와 가깝고 때로는 직결된 것이라면 관심을 기울이지 않을 수 없다. 자기의 손익과 밀접한 관계가 있기 때문이다. 사람은 누구나 자기의 손익에는 민감하게 마련이니까. 따라서 우리가 사람들에게 무언가를 전하려 할 때는 그 ‘사건’이 그들과 밀접한 관계를 가지고 있는 지점을 적극 공략해야 한다. 이 지점을 놓쳐버리면 영화든 소설이든 강의든 성공하기 힘들다. ​고3 교실의 3분의2는 수학을 포기한 학생, ​‘수포자’라고 한다. 이것은 꼭 수학이 어려운 과목이기 때문만이라고는 할 수 없다. 인류 최고의 천재로 게임 이론을 창시한 미국의 물리학자이자 수학자인 폰 노이만은 “수학을 어렵다고 생각하는 사람들은 인생이 얼마나 어려운지를 잘 모르는 사람이다”라는 명언을 남기기도 했다. 아이들을 수포자로 만든 더 큰 원인은 수학 교사가 이들이 ‘수학 하는 재미’를 느끼게 하지 못했다는 사실이 아닐까 생각한다. 아이들이 ‘이 어렵기만 한 수학이 대체 내 삶과 무슨 관계가 있다는 건가?’ 하고 생각하게 되면 수학은 재미없는 과목으로 전락한다. 그렇다면 수학을 어떻게 가르치는 것이 좋을까? 그 교실로 기원전 3세기 고대 그리스의 수학자이자 천문학자인 아리스타르코스(BC 310쯤~230)를 수학 교사로 초빙하는 것이 좋은 방법일 것이다. ​지금으로부터 무려 2300년 전 고대인인 아리스타르코스는 인류 역사상 최초로 지동설을 발견한 사람이다. 그가 지동설을 세운 것은 오로지 직각삼각형 하나를 이용한 수학의 삼각법이었다. ​어느 날 해질녘 아리스타르코스는 중천에 뜬 반달을 보았다. 그 시각 해는 지평선에 걸려 있었고, 달은 정확히 반달이었다. 그 순간 번개 같은 아이디어가 그의 머리에 반짝 불을 켰다. “아! 저 달과 지구-태양이 이루는 각은 직각이고, 세 천제는 지금 직각삼각형을 만들고 있구나!” ​아리스타르코스의 천재성은 여기서 멈추지 않았다. 그는 이 직각삼각형의 한 예각을 알 수 있으면 삼각법을 사용하여 세 변의 상대적 길이를 계산해낼 수 있다고 생각했다. ​그는 먼저 달-지구-태양이 이루는 각도를 쟀다. 87도가 나왔다(참값은 89.5도). 세 각을 알면 세 변의 상대적 길이는 삼각법으로 금방 구해진다. 그런데 희한하게도 달과 태양은 겉보기 크기가 거의 같다. 이는 곧, 달과 태양의 거리 비례가 바로 크기의 비례가 된다는 뜻이다. 아리스타르코스는 이 점에 착안하여, 다음과 같이 세 천체의 상대적 크기를 또 구했다. 태양은 달보다 19배 먼 거리에 있으며(참값은 400배), 지름 또한 19배 크다(참값은 400배). 고로 달의 3배인 지구보다는 7배 크다(참값은 109배). 따라서 태양의 부피는 7의 세제곱으로 지구의 약 300배에 달한다고 결론지었다. 그의 수학은 정확했지만 도구가 좀 부실했던 모양이다. ​하지만 본질적인 핵심은 놓치지 않았다. “지구보다 300배나 큰 태양이 지구 둘레를 돈다는 것은 모순이다. 태양이 우주의 중심에 자리하고 있으며, 지구가 스스로 하루에 한 번 자전하며 1년에 한 번 태양 둘레를 돌 것이다.” ​우주의 중심에서 인류의 위치를 몰아낸 지동설은 이렇게 한 천재의 기하학으로부터 탄생했다. 따지고 보면 직각삼각형 하나가 인류에게 지동설을 알려준 것이라고도 할 수 있다. 이것이 바로 수학의 위력이자 매력이 아닌가! 수학 개념으로 발견한 우주의 원리​천문학사에는 이런 예가 수두룩하지만, 하나만 더 들어보자면 아리스타르코스보다 약 한 세대 뒤에 태어난 에라토스테네스의 예가 또 쏠쏠하게 재미있다. ​역시 천문학자이자 수학자인 에라토스테네스(BC 276~194)는 역사상 최초로 한 천체의 크기를 측정한 위대한 업적을 남겼다. 그가 잰 천체는 물론 지구였다. ​에라토스테네스는 터무니없이 간단한 방법으로 인류 최초로 지구 크기를 쟀는데, 참값에 비해 10% 오차밖에 나지 않은 놀라운 성과를 얻었다. 그가 이용한 방법은 작대기 하나를 땅에다 꽂는 거였다. 해의 그림자를 이용한 측정법이었다. ​구체적으로는 이 역시 기하학을 이용한 건데, 어느 날 도서관에서 책을 뒤적거리다가 ‘남쪽의 시에네 지방(아스완)에서는 하짓날인 6월 21일 정오가 되면 깊은 우물 속 물에 해가 비치어 보인다’는 문장을 읽었다. 이것은 그날 해가 그 지역에서 바로 수직으로 떠 있다는 것을 뜻한다. ​그리스인들은 지역에 따라 북극성의 높이가 다른 사실 등을 근거로 지구가 공처럼 둥글다는 것을 알고 있었다. 구체인 지구의 자전축은 궤도 평면상에서 23.5도 기울어져 있다. 하짓날 시에네 지방에 해가 수직으로 꽂힌다는 것은 곧 시에네의 위도가 23.5도란 뜻이다. 이 지점이 바로 북회귀선, 곧 하지선이 지나는 지역이다. 여기서 천재의 발상법이 나온다. 그는 실제로 6월 21일을 기다렸다가 막대기를 수직으로 세워보았다. 하지만 시에네와는 달리 알렉산드리아에서는 막대 그림자가 생겼다. 그는 여기서 이는 지구 표면이 평평하지 않고 곡면이기 때문이라는 점을 깨달았다. ​그리하여 에라토스테네스가 파피루스 위에다 지구를 나타내는 원 하나를 컴퍼스로 그리던 그 순간, 엄청난 일이 일어났다. 이것은 수학적 개념이 정확한 관측과 결합됐을 때 얼마나 큰 위력을 발휘하는가를 확인해주는 수많은 사례 중의 하나다. ​​​에라토스테네스가 그림자 각도를 재어보니 7.2도였다. 햇빛은 워낙 먼 곳에서 오기 때문에 두 곳의 햇빛이 평행하다고 보고, 엇각과 동위각은 서로 같다는 원리를 적용하면, 이는 곧 시에네와 알렉산드리아 사이의 거리가 지구 대원(大圓)의 7.2도 원호라는 뜻이 된다. ​에라토스테네스는 걸음꾼을 시켜 두 지점 사이의 거리를 걸음으로 재본 결과 약 925㎞라는 값을 얻었다. 그 다음 계산은 간단하다. 여기에 곱하기 360/7.2 하면 답은 약 4만 6250이라는 수치가 나오고, 이는 실제 지구 둘레 4만㎞에 10% 미만의 오차밖에 안 나는 것이다. ​이로써 인류는 우리가 사는 행성의 크기를 최초로 알게 되었고, 이를 아리스타르코스의 태양과 달까지 상대적 거리에 대입시켜 비록 큰 오차가 나는 것이긴 하지만 그 실제 거리를 알게 된 것이다. ​2300년 전 고대에 막대기 하나와 각도기, 사람의 걸음으로 이처럼 정확한 지구의 크기를 알아낸 에라토스테네스야말로 위대한 지성이라 하지 않을 수 없다. 그는 또 수학사에도 이름을 남겼는데, 소수(素數)를 걸러내는 ‘에라토스테네스의 체’를 고안해낸 수학자이기도 하다. 아리스타르코스나 에라토스테네스와 같이 학생들에게 수학을 가르친다면 누가 수학을 재미없는 과목이라 하겠는가. 수포자는커녕 수학의 위대한 매력에 푹 빠져들 것이다. 우리에게 눈이 두 개 있는 것은 그 시차(視差)로 나와 사물 간의 거리를 어림할 수 있게 하기 위함이다. 지금이라도 한쪽 눈을 감고 길을 걸어본다면 무척 갑갑함을 느낄 것이다. 수학을 모르고 세상을 사는 것은 어쩌면 이렇게 외눈박이로 사는 것과 비슷하다고 할 수 있다. 이처럼 수학이 바로 나의 삶과 밀접한 관련이 있음을 학생들에게 주지시켜야 한다. 그러면 분명 수학에 큰 관심을 갖게 될 것이다. 아울러 무엇을 강의하거나 수업하든 교사는 항상 ‘나와 사건의 거리’에 초점을 맞추어야 한다. 그 지점을 놓쳐버리면 ‘재미’를 생산하기 힘들며, 학생들을 사로잡기 어려울 것이다. ​나아가 교사는 자신의 지식을 학생들에게 전하는 데 있어 가장 재미있는 방법에 대해 항상 연구하고 고민하는 자세를 가져야 한다. 무엇보다 스스로 그 일을 즐겁고 재미있게 받아들여야 한다. 자신이 재미있어 하는 것을 가르치는 사람과 별 흥미를 느끼지 못한 채 가르치는 사람은 그 표정부터가 다르다는 사실을 피교육자는 민감하게 감지한다. 가르치는 사람의 열정이 상대에게 전해지고 그들을 변화시킨다는 사실을 깊이 새길 필요가 있다.
  • “책은 사람을 바꾼다” 노원구 김영하 작가 ‘불후의 명강’

    “책은 사람을 바꾼다” 노원구 김영하 작가 ‘불후의 명강’

    서울 노원구가 김영하 작가를 초청해 올해 마지막 ‘불후의 명강’을 개최한다고 14일 밝혔다. 불후의 명강은 인문, 건강, 과학, 대중문화 등 다양한 분야의 명사를 초청해 시대적 문제와 삶에 대한 이야기를 나누는 구의 대표적인 평생교육 사업이다. 2019년 시작한 이래 물리학자 김상욱, 미술평론가 유홍준 등이 강단에 올라 구민들에게 전문적인 지식을 알기 쉽게 풀어내며 소통해 왔다. 다음달 6일 오후 3시 노원구민의전당 대강당에서 개최되는 이번 강의는 ‘왜 책을 읽는가’를 주제로 김영하 작가가 강연자로 나선다. 김 작가는 소설 ‘살인자의 기억법’, ‘나는 나를 파괴할 권리가 있다’, ‘검은 꽃’, ‘여행의 이유’ 등을 집필했다. tvN ‘알쓸신잡’, ‘유퀴즈 온 더 블록’ 등 방송에 출연해 대중과 활발히 소통하고 있다. 이번 강연에서 김 작가는 수많은 콘텐츠가 범람하는 시대에 책을 읽어야만 하는 이유는 무엇이고, 책을 읽음으로써 어떤 변화가 일어날 수 있는지에 대한 작가의 풍부한 경험을 흥미롭고 유쾌하게 풀어낼 예정이다. 참여를 원하는 구민은 오는 18일부터 노원구청 누리집에서 진행되는 온라인 사전 신청 또는 강연 당일 현장 신청이 가능하다. 온라인은 500명, 현장은 100명을 선착순으로 접수하여 무료로 진행되며 좌석은 지정석 없는 자유좌석제다. 언어 및 청각 장애가 있는 구민들을 위해 수어 통역사를 배치하고, 현장 방문이 어려운 구민들을 위해서는 노원구 공식 유튜브 채널 ‘미홍씨’를 통해 실시간으로 영상을 송출할 예정이다. 오승록 노원구청장은 “독서를 통한 사고력과 인문학적 소양 등의 역량이 더욱 중요해지고 있다”라며 “미디어에 수많은 정보가 범람하는 시대에 독서의 중요성을 한번 더 생각해보는 소중한 시간이 되시길 바란다”라고 말했다.
  • 시베리아 집어삼킨 초대형 싱크홀, 원인은?

    시베리아 집어삼킨 초대형 싱크홀, 원인은?

    러시아 시베리아 곳곳에서 발견되고 있는 의문의 초대형 싱크홀과 관련한 새로운 연구 결과가 공개됐다고 미국 CNN이 11일(이하 현지시간) 보도했다. 약 10년 전인 2013년, 시베리아 한복판에서 원인을 알 수 없는 거대한 싱크홀이 처음 등장했다. 2020년에는 깊이 30m‧너비 20m에 달하는 싱크홀이 나타났고, 2022년에도 너비 30.5m 규모의 초대형 싱크홀이 발견된 바 있다. 새하얀 눈으로 뒤덮인 시베리아 한복판에 생긴 거대한 싱크홀을 본 일부 주민들은 “지옥문이 열렸다”며 우려를 감추지 못했다. CNN에 따르면 2014년 이후 현재까지 시베리아 곳곳에서 발견된 대형 싱크홀은 20개가 넘으며, 가장 최근에 발견된 사례는 지난 8월이었다. 시베리아에서 싱크홀이 발견될 때마다 운석 충돌설이나 미확인비행물체(UFO)의 착륙 흔적이라는 다양한 추측이 제기됐으나 정확한 원인은 밝혀지지 않았다. 최근 영국 케임브리지대학의 아나 모르가도 교수는 물리학자와 컴퓨터 과학자 등으로 구성된 연구진을 꾸려 시베리아의 대형 싱크홀 원인을 분석했다. 연구진에 따르면 툰드라(북극해 연안의 동토지대) 아래에 갇힌 메탄 등 가스가 지하에 쌓이면서 표면이 언덕처럼 부풀어 오르다가, 지하의 압력이 강해지면 언덕이 폭발하면서 가스가 터져 나오고 그 지역에 거대한 싱크홀이 발생된다. 다만 툰드라 지대 아래에서 어떤 과정을 통해 강한 압력이 형성되는지, 지하에 갇힌 가스가 어떻게 생성되는지 등에 대한 의문점이 남아있다. 연구를 이끈 모르가도 교수는 “싱크홀을 만드는 폭발이 화학반응일 가능성을 고려해봤지만, 싱크홀에서는 화학 연소와 관련한 어떤 흔적도 없었다”면서 “우리가 발견한 것은 시베리아 특정 지역의 복합적인 지질학적 특징이었다”고 설명했다. 시베리아 표면 아래에는 흙과 바위, 퇴적물이 뒤엉켜 얼어있는 두꺼운 영구동토층이 있다. 그 아래에는 고체 형태의 메탄인 ‘메탄 하이드레이트’ 층이 있다. 영구동토층과 메탄 하이드레이트층 사이에는 얼지 않은 소금물이 담긴 ‘저온염수호’(cryopegs) 층이 존재한다. 저온염수호의 두께는 9.5m 가량이며, 영구동토층-저온염수호-메탄 하이드레이트 층은 시베리아 등 일부 북극 지역에서 주로 관찰되는 특이한 지형 형태로 알려졌다. 연구에 따르면, 기후변화로 기온이 상승하면서 영구동토층이 녹고, 이로 인해 영구동토층을 통과한 물이 소금기가 있는 저온염수호 층으로 스며든다. 이 과정에서 저온염수호 층이 녹아서 흘러들어온 물을 저장할 공간이 부족해지고 압력이 높아지면서 땅이 갈라지고 표면이 균열이 발생할 수 있다. 이렇게 생긴 균열은 지하 깊은 곳의 압력을 빠르게 떨어뜨리다가 메탄 하이드레이트층을 손상시키면서 폭발적인 가스 방출로 이어지고, 이것이 거대한 시베리아 싱크홀을 만든다는 게 연구진의 설명이다. 모르가도 교수는 “이러한 과정은 시베리아 지역에 매우 특화된 현상이며, 영구동토층과 메탄이 녹고 폭발로 이어지기까지의 복잡한 과정은 수십 년 동안 이어질 수 있다”면서 “그 결과 시베리아의 미스터리한 싱크홀들은 인간이 초래한 기후변화 및 이 지역의 독특한 지질 특성으로 인한 것”이라고 설명했다. 다만 일부 전문가는 이번 연구 결과에서 여전히 풀리지 않은 의문점들이 있다고 지적한다. 모스크바 스콜코보 과학기술연구소 소속 수석 연구진인 예브게니 추빌린 교수는 CNN에 “시베리아 북서부의 영구동토층은 얼음과 메탄이 매우 많은 특이한 곳인 것은 사실이나, 토양의 최상층에서 녹은 물이 두껍고 얼음이 많은 층을 뚫고 지하 깊은 곳에 있는 ‘저온 염수호’에 도달하기는 어려울 수 있다”고 반박했다. 하와이대학의 지구물리학자인 로렌 슈르마이어 교수 역시 “모르가도 교수의 연구가 이론적으로는 타당하지만, (시베리아 지하에는) 분화구를 만들만한 잠재적인 가스 공급원이 많다”고 덧붙였다. 여러 이견에도 불구하고 전문가들은 기후변화가 시베리아의 대형 싱크홀 생성에 중요한 역할을 하고 있으며, 앞으로도 이러한 거대 분화구가 증가할 수 있다는 추측에 대부분 동의했다. 추빌린 교수는 “지구온난화는 땅 속 깊은 곳의 가스가 지상으로 분출되기 쉽게 만든다. 기후변화가 가속화하면 영구동토층 파괴 및 강력한 가스 분출 등으로 새로운 싱크홀이 더 많아질 수 있다”고 말했다. CNN은 “시베리아에서 더 많은 싱크홀이 만들어지고 있는 현상은 기후변화의 영향을 받은 것이지만, 이것이 기후변화에 기여하기도 한다. 싱크홀이 만들어지면서 지구 깊숙한 곳에 있는 메탄이 분출되는데, 이는 대기 중의 이산화탄소보다 최대 80배 더 많은 열을 가둔다”고 지적했다.
  • (영상)‘러시아에 열린 지옥문’…미스터리 초대형 싱크홀 원인 찾았다[핵잼 사이언스]

    (영상)‘러시아에 열린 지옥문’…미스터리 초대형 싱크홀 원인 찾았다[핵잼 사이언스]

    러시아 시베리아 곳곳에서 발견되고 있는 의문의 초대형 싱크홀과 관련한 새로운 연구 결과가 공개됐다고 미국 CNN이 11일(이하 현지시간) 보도했다. 약 10년 전인 2013년, 시베리아 한복판에서 원인을 알 수 없는 거대한 싱크홀이 처음 등장했다. 2020년에는 깊이 30m‧너비 20m에 달하는 싱크홀이 나타났고, 2022년에도 너비 30.5m 규모의 초대형 싱크홀이 발견된 바 있다. 새하얀 눈으로 뒤덮인 시베리아 한복판에 생긴 거대한 싱크홀을 본 일부 주민들은 “지옥문이 열렸다”며 우려를 감추지 못했다. CNN에 따르면 2014년 이후 현재까지 시베리아 곳곳에서 발견된 대형 싱크홀은 20개가 넘으며, 가장 최근에 발견된 사례는 지난 8월이었다. 시베리아에서 싱크홀이 발견될 때마다 운석 충돌설이나 미확인비행물체(UFO)의 착륙 흔적이라는 다양한 추측이 제기됐으나 정확한 원인은 밝혀지지 않았다. 최근 영국 케임브리지대학의 아나 모르가도 교수는 물리학자와 컴퓨터 과학자 등으로 구성된 연구진을 꾸려 시베리아의 대형 싱크홀 원인을 분석했다. 연구진에 따르면 툰드라(북극해 연안의 동토지대) 아래에 갇힌 메탄 등 가스가 지하에 쌓이면서 표면이 언덕처럼 부풀어 오르다가, 지하의 압력이 강해지면 언덕이 폭발하면서 가스가 터져 나오고 그 지역에 거대한 싱크홀이 발생된다. 다만 툰드라 지대 아래에서 어떤 과정을 통해 강한 압력이 형성되는지, 지하에 갇힌 가스가 어떻게 생성되는지 등에 대한 의문점이 남아있다. 연구를 이끈 모르가도 교수는 “싱크홀을 만드는 폭발이 화학반응일 가능성을 고려해봤지만, 싱크홀에서는 화학 연소와 관련한 어떤 흔적도 없었다”면서 “우리가 발견한 것은 시베리아 특정 지역의 복합적인 지질학적 특징이었다”고 설명했다. 시베리아 표면 아래에는 흙과 바위, 퇴적물이 뒤엉켜 얼어있는 두꺼운 영구동토층이 있다. 그 아래에는 고체 형태의 메탄인 ‘메탄 하이드레이트’ 층이 있다. 영구동토층과 메탄 하이드레이트층 사이에는 얼지 않은 소금물이 담긴 ‘저온염수호’(cryopegs) 층이 존재한다. 저온염수호의 두께는 9.5m 가량이며, 영구동토층-저온염수호-메탄 하이드레이트 층은 시베리아 등 일부 북극 지역에서 주로 관찰되는 특이한 지형 형태로 알려졌다. 연구에 따르면, 기후변화로 기온이 상승하면서 영구동토층이 녹고, 이로 인해 영구동토층을 통과한 물이 소금기가 있는 저온염수호 층으로 스며든다. 이 과정에서 저온염수호 층이 녹아서 흘러들어온 물을 저장할 공간이 부족해지고 압력이 높아지면서 땅이 갈라지고 표면이 균열이 발생할 수 있다. 이렇게 생긴 균열은 지하 깊은 곳의 압력을 빠르게 떨어뜨리다가 메탄 하이드레이트층을 손상시키면서 폭발적인 가스 방출로 이어지고, 이것이 거대한 시베리아 싱크홀을 만든다는 게 연구진의 설명이다. 모르가도 교수는 “이러한 과정은 시베리아 지역에 매우 특화된 현상이며, 영구동토층과 메탄이 녹고 폭발로 이어지기까지의 복잡한 과정은 수십 년 동안 이어질 수 있다”면서 “그 결과 시베리아의 미스터리한 싱크홀들은 인간이 초래한 기후변화 및 이 지역의 독특한 지질 특성으로 인한 것”이라고 설명했다. 다만 일부 전문가는 이번 연구 결과에서 여전히 풀리지 않은 의문점들이 있다고 지적한다. 모스크바 스콜코보 과학기술연구소 소속 수석 연구진인 예브게니 추빌린 교수는 CNN에 “시베리아 북서부의 영구동토층은 얼음과 메탄이 매우 많은 특이한 곳인 것은 사실이나, 토양의 최상층에서 녹은 물이 두껍고 얼음이 많은 층을 뚫고 지하 깊은 곳에 있는 ‘저온 염수호’에 도달하기는 어려울 수 있다”고 반박했다. 하와이대학의 지구물리학자인 로렌 슈르마이어 교수 역시 “모르가도 교수의 연구가 이론적으로는 타당하지만, (시베리아 지하에는) 분화구를 만들만한 잠재적인 가스 공급원이 많다”고 덧붙였다. 여러 이견에도 불구하고 전문가들은 기후변화가 시베리아의 대형 싱크홀 생성에 중요한 역할을 하고 있으며, 앞으로도 이러한 거대 분화구가 증가할 수 있다는 추측에 대부분 동의했다. 추빌린 교수는 “지구온난화는 땅 속 깊은 곳의 가스가 지상으로 분출되기 쉽게 만든다. 기후변화가 가속화하면 영구동토층 파괴 및 강력한 가스 분출 등으로 새로운 싱크홀이 더 많아질 수 있다”고 말했다. CNN은 “시베리아에서 더 많은 싱크홀이 만들어지고 있는 현상은 기후변화의 영향을 받은 것이지만, 이것이 기후변화에 기여하기도 한다. 싱크홀이 만들어지면서 지구 깊숙한 곳에 있는 메탄이 분출되는데, 이는 대기 중의 이산화탄소보다 최대 80배 더 많은 열을 가둔다”고 지적했다.
  • 바닷가재서 찾은 ‘X선 망원경’… 영감이 된 자연

    바닷가재서 찾은 ‘X선 망원경’… 영감이 된 자연

    과학소설(SF)이나 아이들이 좋아하는 만화에는 자동차나 동물이 로봇으로 변신하는 장면이 자주 등장한다. 변신 로봇까지는 아니지만 과학자들도 자연이나 동물로부터 영감을 받아 발견과 발명을 하는 경우가 많다. 이 책에서는 자연의 메커니즘을 모방하는 생체 모방, 자연 모사로 만들어 낸 13가지 독창적 아이디어를 만날 수 있다. 천체물리학자나 천문학자들이 블랙홀, 중성자별, 은하계의 활동과 밝기 변화 등을 연구할 때는 가시광선보다 짧은 파장을 가진 X선을 이용한 망원경을 사용한다. 미국 애리조나대학의 천문학자 로저 에인절은 X선 망원경의 아이디어를 바닷가재에서 찾았다. 바닷가재는 사람의 주간 시력보다 256배나 뛰어난 시력으로 어둠 속에서도 물체를 식별할 수 있다. 새까만 눈은 천문대 돔 지붕처럼 수백만 개의 아주 작은 반사관으로 구성돼 있어 모든 각도에서 빛을 모아 망막 한 지점에 집중시키기 때문에 가능한 일이다. 드론의 군집 비행 기술은 개미나 벌의 사회를 관찰해 개발했고, 제2형 당뇨병 치료제는 파충류 ‘힐라몬스터’를 참고했으며, 시멘트 제조 과정에서 발생하는 탄소 배출을 최소화하는 방법은 산호가 바다에서 몸집을 키우는 방식을 관찰해 찾았다. 이런 사례들을 통해 저자는 “온도 조절, 운송 수단, 식량, 에너지 등 인류가 직면한 문제들을 자연은 이미 오래전에 해결했다”며 “자연은 지속 가능성의 실마리를 보여 준다”고 말한다. 책을 읽다 보면 곳곳에서 저자의 자연에 대한 애정 어린 시선을 느낄 수 있다. 그는 자연이 단순히 과학적 아이디어의 원천이라는 것을 말하고 있지 않다. 인류의 과학 발전을 위해 자연을 활용하더라도 생태계 보전과 생명 다양성 보존이라는 올바른 방향으로 나아갈 필요가 있음을 은연중에 드러낸다. 그렇기 때문에 “인간이 도구를 만드는 재능을 부주의하게 남용한다면 쓰레기 산, 자원 고갈, 환경 악화 문제는 끊이지 않을 것이며 결국 지구는 희망 없는 세상으로 변할 것”이라는 저자의 경고가 더 무겁게 다가온다.
  • [책꽂이]

    [책꽂이]

    카오스, 카오스 에브리웨어(팀 파머 지음, 박병철 옮김, 디플롯) ‘카오스 이론’이라고 하면 ‘베이징에서의 나비의 날갯짓이 플로리다에 허리케인을 일으킨다’라는 말을 떠올리는 사람이 많다. 카오스 이론의 핵심은 불확실성과 예측 불가능성이다. 이론물리학자이자 기상학자로, 현재 많은 나라 기상청에서 쓰고 있는 앙상블 예측 기법의 기틀을 마련한 저자는 “예측할 수 없는 것을 예측하는 것은 가능할까”라는 질문에 대해 확률적 예측이라면 가능하다는 것을 설명한다. 비선형 확률 예측 기법은 날씨는 물론 바이러스 확산, 경제 변동, 국가 간 충돌까지 다양한 상황에서 무질서 속의 질서를 보게 해 준다. 436쪽, 2만 7800원. 나의 인생만사 답사기(유홍준 지음, 창비) 유홍준 명지대 미술사학과 석좌교수는 박물관장, 문화재청장, 한국학중앙연구원 이사장까지 다양한 경력을 갖고 있다. 그러나 그를 대표하는 것은 500만부 판매 신화를 쓴 인문학 스테디셀러 ‘나의 문화유산답사기’다. 산문이나 에세이, 수필도 아니고 ‘잡문’이라는 이름을 붙여 하나 마나 한 이야기로 생각하기 쉽지만 답사기를 쓰면서 겪었던 일들, 예술과 문화를 대하는 태도, 예술을 통해 얻을 수 있는 즐거움과 아름다움을 말하는 문장들로 가득 차 있다. 부록에는 ‘좋은 글쓰기를 위한 15가지 조언’이 실려 베스트셀러 작가의 작문 비법도 훔쳐볼 수 있다. 364쪽, 2만 2000원. 언니네 미술관(이진민 지음, 한겨레출판사) 미술관에 가는 것은 좋지만 그림을 어떻게 봐야 하는지 어려워하는 사람들이 많다. 철학자인 저자는 슬픔, 사소함, 서투름, 근육, 거울, 마녀, 직선과 곡선, 앞과 뒤, 너와 나라는 9개 키워드로 그림을 읽는 방법을 제시한다. 저자는 그림 속 요소들을 하나씩 꼼꼼히 살펴봄으로써 자기 몸에 있는 모든 감각을 온전히 느끼고, 인간을 인간답게 만드는 것이 무엇인지, 사물의 뒷모습과 보이는 것 너머를 보는 마음에 대해 생각하자고 제안한다. 332쪽, 1만 8500원. 레볼루션 코리아(구윤철 지음, 바다위의정원) 33년 동안 국가 정책과 예산을 다루는 일을 맡았던 저자가 현재 대한민국은 선진국 반열에 들어섰지만 국가 시스템 곳곳에 여전히 추격형 경제 시절의 비효율성이 남아 있다고 지적한다. 국가 발전과 국민 행복을 쌍끌이하기 위해 경제, 사회, 정치, 행정 분야에서 필요한 11가지 실행 전략을 제시한다. 320쪽, 2만 5000원.
  • 지구를 향해 날아오는 운석, 어디서 오는지 봤더니… [달콤한 사이언스]

    지구를 향해 날아오는 운석, 어디서 오는지 봤더니… [달콤한 사이언스]

    지구에서 발견되는 운석 상당수는 화성과 목성 사이에 있는 소행성대의 소행성에서 날아든다. 미국 항공우주국(NASA)의 조사에 따르면 지금까지 발견된 운석은 약 5만개로, 이 중 99.8%가 소행성에서 왔다. 다양한 이유로 소행성에서 떨어져 나간 파편들이 우주를 떠돌다가 지구 중력에 이끌려 지구에 떨어지게 된 것이다. 그런데, 과학자들이 지구에 도달하는 가장 흔한 운석은 몇 가지 소행성 파괴로 인해 날아 온 것이며, 그것 중에는 비교적 최근에 발견한 것들도 상당수라는 사실을 밝혀냈다. 이 같은 사실은 과학 저널 ‘네이처’ 10월 17일 자에 2편의 논문으로 실렸다. 운석의 한 종류인 ‘O-콘드라이트’는 지구에 가장 많이 낙하하는 운석으로 약 80%를 차지한다. 시원적 석질운석(primitive stony meteorites)이라고도 불리는 이 운석은 약 4억 6600만 년 전 강력한 충돌 사건과 관련된 운석들도 많다. 앞선 연구들에 따르면 O-콘드라이트 운석은 지구화학적, 암석 화학적으로 H, L, LL 세 그룹으로 나뉜다. 지구 운석 중 약 70%는 H와 L 콘드라이트로 알려진 조성을 갖고 있다. 특히 L 콘드라이트 운석에 대한 ‘아르곤-아르곤 연대측정’을 한 결과, 약 4억 7000만 년 전에 초음속으로 충돌한 소행성 하나에서 부서져 나온 것으로 나타났다. 이에 유럽 남방 천문대(ESO), 미국 매사추세츠공과대(MIT), 노던 애리조나대, 애리조나대, 프랑스 엑스 마르세이유대, 소피아 앙티폴리스대, 체코 천문학 연구소, 영국 라이세스터대, 이스라엘 바이츠만 과학 연구소 소속 천문학자, 지질학자, 물리학자로 구성된 연구팀은 화성과 목성 사이 소행성대에 있는 소행성들의 분광학적 자료를 수집해 분석했다. 그 결과, ‘마살리아 족(族)’으로 불리는 소행성 집단이 지구에서 발견된 L 콘드라이트 운석의 조성과 유사하다는 것을 발견했다. 연구팀은 컴퓨터 가상 실험을 통해 약 4억 5000만년 전에 L 콘드라이트 소행성이 파괴되는 충돌 사건으로 마살리아 족이 형성되고, 이 중에서 파괴된 조각들이 운석으로 지구에 유입된 것으로 추정했다. 체코 카를로바대, 프랑스 엑스 마르세이유대, ESO, 미국 MIT, 사우스웨스트 연구소 소속 천문학자, 수학자, 물리학자, 지질학자로 구성된 또 다른 연구팀은 현재 지구로 떨어진 H와 L 콘드라이트 운석은 지질학적으로 비교적 최근에 발생한 충돌 사건으로 발생한 것들이라고 추정했다. 연구팀에 따르면 각각 580만 년, 760만 년, 4000만 년 전에 발생했으며, 지름 30㎞ 이상의 소행성이 파괴됐다. 좀 더 구체적으로 보면 상대적으로 젊은 코로니스족과 코로니스 족의 하위 소행성족인 카린족에서 발생한 충돌과 약 4000만 년 전 마살리아 족에서 두 번째 충돌 사건으로 생긴 것들이 현재 지구에 떨어지는 운석이라고 설명한다. 첫 번째 논문 연구를 이끈 마이클 마세트 ESO 수석 연구원은 “이번 발견은 지금까지 지구에 충돌한 가장 흔한 운석들이 어디에서 왔는지, 그리고 그런 충돌이 지구 역사에 어떤 영향을 미쳤는지 파악하는 데 도움을 줄 것”이라고 말했다.
위로