찾아보고 싶은 뉴스가 있다면, 검색
검색
최근검색어
  • 궤도
    2026-02-05
    검색기록 지우기
저장된 검색어가 없습니다.
검색어 저장 기능이 꺼져 있습니다.
검색어 저장 끄기
전체삭제
10,603
  • [이광식의 천문학+] 혜성, 우주의 ‘공포 대마왕’인가?

    [이광식의 천문학+] 혜성, 우주의 ‘공포 대마왕’인가?

    ▲ 태양계 탄생의 비밀을 간직한 ‘우주의 방랑자’ '공포의 대마왕' 우주에는 그 규모나 내용에서 우리의 상상을 초월하는 엄청난 사건들이 일어나고 있지만, 사람의 눈으로 볼 수 있는 천체현상 중 최고의 장관은 단연 혜성 출현일 것이다. 어떤 장대한 혜성의 꼬리는 태양에서 지구까지 거리의 2배에 달하며, 그 주기가 수십만 년을 헤아리는 것도 있다 하니 참으로 상상하기조차 힘든 일이다. 혜성이 남기고 간 부스러기라 할 수 있는 별똥별을 보며 소원을 빌어온 우리에겐 입이 딱 벌어질 스케일이라 하겠다. 태양계의 방랑자, 혜성은 태양이나 큰 질량의 행성에 대해 타원이나 포물선 궤도를 도는 태양계에 속한 작은 천체를 뜻하며, 우리말로는 살별이라고 한다. 혜성(彗星)의 ‘혜(彗)’가 ‘빗자루’라는 뜻에서도 알 수 있듯이, 빛나는 머리와 긴 꼬리를 가지고 밤하늘을 운행하는 혜성은 예로부터 고대인들에 의해 많이 관측되었다. 연대가 확실한 가장 오랜 혜성관측 기록으로는 기원전 1059년, 중국의 ‘주 나라 때 빗자루별이 동쪽에서 나타났다’는 기록이다. 유럽에서는 기원전 467년 그리스 사람들이 혜성 기록을 남겼다. 그리스 어로 혜성을 코멧(Komet)이라 하는데, 머리털을 뜻한다. 묘하게도 동서양이 혜성에 대해서는 하나의 일치된 관념을 갖고 있었는데, 그것은 혜성 출현이 불길한 징조라는 것이다. 왕의 죽음이나 망국, 큰 화재, 전쟁, 전염병 등 재앙을 불러오는 별이라고 믿었다. 고대인에게 혜성은 ‘공포의 대마왕’으로 두려움의 대상이었던 것이다. 혜성의 시차를 측정하여 혜성이 지구 대기상에서 나타나는 현상이 아닌 천체의 일종임을 최초로 밝혀낸 사람은 16세기 덴마크의 천문학자 튀코 브라헤였다. 이는 아리스토텔레스의 우주관을 뒤엎은 대단한 발견이었다. 아리스토텔레스는 달을 경계로 삼아 지상과 천상의 세계를 엄격하게 나누었는데, 무상한 지상의 세계와는 달리 천상은 세계는 변화가 없는 완전한 세계라고 주장했던 것이다. 그러나 튀코의 이 발견으로 천상의 세계 역시 무상하다는 것이 밝혀진 셈이다. 혜성이 태양계의 구성원임을 입증한 사람은 17세기 영국 천문학자 에드먼드 핼리였다. 1682년, 핼리는 어느 날 혜성을 본 후, 옥스퍼드 대학 도서관에 있던 옛날 혜성기록을 뒤져본 결과, 1456년, 1531년, 1607년에 목격된 혜성이 자기가 본 것과 비슷하다는 점을 깨닫고, “이 혜성은 불길한 일을 예시하는 별이 아니라, 76년을 주기로 지구 주위를 타원궤도로 도는 천체로, 1758년 다시 올 것이다“라고 예언했다. 그는 자신의 예언을 확인하지 못하고 죽었지만, 과연 1758년 크리스마스 밤에 이 혜성이 나타난 것을 독일의 한 농사꾼 아마추어 천문가가 발견했다. 이로써 이 혜성이 태양을 끼고 도는 하나의 천체임이 증명되었고, 핼리의 업적을 기리는 뜻에서 ‘핼리 혜성’이라 이름지어졌다. ▲ 핼리 혜성에 얽힌 한 소설가의 슬픈 사연 이 핼리 혜성에는 한 소설가의 슬픈 사연이 얽혀 있다. '톰 소여의 모험', '허클베리 핀의 모험' 등으로 우리에게도 친숙한 마크 트웨인이 그 주인공으로, 그는 핼리 혜성이 온 1835년에 태어나서, 혜성이 다시 찾아온 1901년에 세상을 떠났다. 76년 주기인 혜성과 주기를 같이한 트웨인은 만년에 불우한 삶을 살았다. 70세 때 아내와 장녀인 수지가 같은 시기에 세상을 떠나고, 몇 년 후에는 셋째 딸마저 간질로 그 뒤를 따랐다. 남은 자식이라고는 둘째 딸 클라라뿐이었다. 그는 실의에 빠진 채 만년을 보냈는데, 유일한 즐거움은 과학책을 읽는 것이었다. "나는 1835년 핼리 혜성과 함께 왔다. 내년에 다시 온다고 하니 나는 그와 함께 떠나려 한다. 내가 만일 핼리 혜성과 함께 가지 못한다면 그것은 내 인생에서 가장 실망스러운 일이 될 것이다"라고 말했던 트웨인은 1910년 어느 날 밤 별이 뜰 무렵 둘째 달 클라라의 손을 잡고 “안녕, 클라라. 우린 꼭 다시 만날 수 있을 거야”라고 말을 남겼는데, 그때 핼리 혜성이 다시 지구를 찾아왔고, 트웨인은 그 이튿날 세상을 떠났다. 1910년 4월 21일이었다. 핼리 혜성이 가장 최근에 나타난 해는 1986년이었고, 다음 방문은 2061년으로 예약되어 있다. 필자뿐 아니라 현재 지구 행성에서 살고 있는 70억 인구 중 3분의 1은 그때 핼리 혜성이 태양을 향해 달려가는 장관을 볼 수 없을 것이다. 핼리 혜성은 7만 6000년 후에 수명을 다하게 된다. 핼리 혜성처럼 태양계 내에 붙잡혀 길다란 타원궤도를 가지고 주기적으로 태양을 도는 혜성을 주기 혜성이라 하고, 포물선이나 쌍곡선 궤도를 갖고 있어 태양에 딱 한 번만 접근하고는 태양계를 벗어나 다시는 돌아오지 않는 혜성을 비주기 혜성이라 한다. 주기 혜성은 200년 이하의 주기를 가지는 단주기 혜성과, 200년 이상 수십만 년에 이르는 주기를 가진 장주기 혜성으로 나누어진다. 혜성은 크게 머리와 꼬리로 구분된다. 머리는 다시 안쪽의 핵과, 핵을 둘러싸고 있는 코마로 나누어진다. 핵이 탄소와 암모니아, 메탄 등이 뭉쳐진 얼음덩어리라는 사실이 최초로 밝혀진 것은 1950년 미국의 천문학자 위플에 의해서였다. 그러니 혜성의 정체가 제대로 알려진 것은 반세기 남짓밖에 되지 않은 셈이다. 핵을 둘러싼 코마는 태양열로 인해 핵에서 분출되는 가스와 먼지로 이루어진 것으로, 혜성이 대개 목성궤도에 접근하는 7AU 정도 거리가 되면 코마가 만들어지기 시작한다. 우리가 혜성을 볼 수 있는 것은 이 부분이 햇빛을 반사하기 때문이다. 코마의 범위는 보통 지름 2만~20만km 정도로 목성 크기만 하기도 하고, 때로는 지구와 달까지 거리의 약 3배나 되는 100만km를 넘는 것도 있다. 혜성의 꼬리는 코마의 물질들이 태양풍의 압력에 의해 뒤로 밀려나서 생기는 것이다. 이 황백색을 띤 꼬리는 태양과 반대방향으로 넓고 휘어진 모습으로 생기며, 태양에 다가갈수록 길이가 길어진다. 꼬리가 긴 경우에는 태양에서 지구까지의 거리 2배만큼 긴 것도 있다니, 참으로 장관이 아닐 수 없겠다. 태양에 가까이 다가가면 두 개의 꼬리가 생기기도 하는데, 앞에서 말한 먼지꼬리 외에 가스 꼬리 또는 이온 꼬리라고 불리는 것이 생긴다. 태양 반대쪽으로 길고 좁게 뻗는 가스 꼬리는 이온들이 희박하여 눈으로는 잘 보이지 않지만, 사진을 찍어 보면 푸른색을 띤 꼬리가 길게 뻗어 있는 것을 볼 수 있다. 근래에 온 혜성으로 단연 화제를 모았던 것은 1994년 7월 16일 목성과 충돌한 슈메이커-레비9 혜성이었다. 21개로 쪼개어진 조각들이 목성의 남반구에 차례로 충돌했는데, 충돌 당시 전 세계의 관심을 모았으며, 방송에서는 큰 화제가 되기도 했다. 외계 물체 중 최초로 태양계의 물체에 충돌하는 장관을 실감나게 보여주었던 것이다. 혜성 탐사선으로는 미국의 스타더스트 호가 99년 2월에 발사되었다. 이 탐사선은 2004년 1월에 혜성 와일드 2로부터 표본을 채취해 지구로 돌아왔다. 또한 67P/추류모프-게라시멘코’ 혜성에 착륙을 시도하기 위한 유럽우주국의 로제타 호는 2004년 3월에 발사되었는데, 지난 2014년 11월 12일 로제타 호의 탐사 로봇 ‘필레’가 역사상 최초로 67P 혜성에 성공적으로 착륙했다. 현재 로제타 호는 태양에 접근해가는 혜성 궤도를 돌면서 같이 따라가고 있는 중이다. ▲ '혜성들의 고향' 혜성은 어디에서 오는가? 혜성의 고향을 알기 위해서는 먼저 그 기원을 알지 않으면 안된다. 널리 받아들여지는 혜성 기원론에 따르면, 혜성은 행성과 위성들이 만들어지고 남은 잔해이기 때문에 태양계만큼이나 오래된 천체라는 것이다. 이 잔해들이 해왕성 너머 30~50AU 공간에 납작한 원반 모양으로 분포하고 있는데, 이곳이 바로 단주기 혜성들의 고향으로 카이퍼 대라 한다. 장주기 혜성의 고향은 그보다 훨씬 멀리, 5만~15만AU 가량 떨어진 오르트 구름이다. 지름 약 2광년으로, 거대한 둥근 공처럼 태양계를 둘러싸고 있는 오르트 구름은 수천억 개를 헤아리는 혜성의 핵들로 이루어져 있다. 탄소가 섞인 얼음덩어리인 이 핵들이 가까운 항성이나 은하들의 중력으로 이탈하여 태양계 안쪽으로 튕겨들어 혜성이 되는 것이다. 이 혜성은 온도가 매우 낮은 태양계 바깥쪽에 있었기 때문에 태양계가 탄생할 때의 물질과 상태를 수십억 년 동안 그대로 지니고 있는 만큼 태양계 탄생의 비밀을 간직한 ‘태양계 화석’이라 할 수 있다. 단주기 혜성의 경우, 태양에서 목성과 해왕성 사이를 타원궤도를 그리며 운동한다. 태양계 내의 천체가 태양에서 가장 멀리 떨어져 있을 때의 거리를 원일점, 가장 가까이 있을 때의 거리를 근일점이라 하는데, 단주기 혜성은 원일점의 위치에 따라 목성족, 토성족, 천왕성족, 해왕성족으로 나누어진다. 예컨대, 가장 짧은 3.3년 주기의 엥케 혜성은 목성족, 76년 주기의 핼리 혜성은 해왕성족에 속한다. 장주기 혜성은 해왕성 바깥까지 갔다가 되돌아오는 길쭉한 타원궤도로, 대부분의 혜성이 이에 속한다. 원일점은 대략 1만~10만AU 정도 거리에 있다. 우주 속에 영원한 것이 어디 있으리오마는, 혜성의 경우는 더욱 극적이다. 태양의 인력에 이끌려 태양계 안으로 들어온 혜성들은 각기 다른 운명을 겪는데, 태양과 행성들의 인력에 따라 궤도가 달라져, 어떤 것은 태양계 밖으로 밀려나 다시는 돌아오지 못하고 우주의 미아가 되거나, 행성의 강한 인력으로 쪼개지기도 한다. 또 어떤 것은 태양이나 행성에 충돌하여 최후를 맞는 경우도 있다. 보통 혜성은 서울시만한 크기로, 혜성이 태양을 방문할 때마다 핵에서 약 1억 톤 가량의 물질을 방출하기 때문에 핵 표면이 약 3m씩 줄어든다고 한다. 엥케 혜성은 천 번 곧, 3,300년 후, 수백억 년을 사는 별에 비해서는 참으로 찰나의 삶을 사는 존재라 하겠다. 혜성은 궤도를 운행하면서 티끌이나 돌조각들을 궤도상에 흩뿌리는데, 이러한 혜성의 입자들이 혜성 궤도 주위에 모여 있는 것을 유성류(流星流)라 한다. 공전하는 지구가 이 유성류 속을 지날 때 지구 대기와의 마찰로 불타며 떨어지는데, 이것을 유성 또는 별똥별이라 하며, 많은 유성이 무더기로 떨어지는 것을 유성우(流星雨)라 한다. 유성우는 지구 대기권으로 평행하게 떨어지지만, 우리가 보기에는 하늘의 한 곳에서 떨어지는 것처럼 보인다. 이 중심점을 복사점이라 하고, 복사점이 자리한 별자리의 이름을 따라 유성우의 이름이 정해진다. 유성우 중에서는 특히 사자자리 유성우가 유명한데, 주기 33년의 템펠-터틀 혜성이 연출하는 것으로서, 매년 11월 17일과 18일을 전후하여 시간당 십수개에서 많은 경우 수십만 개의 유성이 떨어진다. 혜성이 지구가 형성되기 전부터 존재했다는 것은 알려져 있지만, 아직도 혜성의 많은 부분은 신비에 싸여 있다. 어떤 학자들은 혜성이 가져다준 물이 지구의 바다를 만들었다고 주장하기도 하고, 어떤 학자들은 지구에 생명의 씨앗과 생명의 물질을 공급해왔다는 주장도 한다. 한편, 중생대 말 공룡을 비롯한 지구상의 생물 대부분을 멸종시킨 거대한 재앙의 근원이 혜성 충돌 때문이라는 주장은 거의 정설로 굳어가고 있다. 만약 이러한 주장들이 사실이라면 혜성은 지구 생명의 창조자이자 파괴자이며, 인류의 미래와 운명에 직결되어 있는 존재인 셈이다. 마지막으로 장주기 혜성 하나. 1975년에 발견된 웨스트 혜성은 원일점이 13,560AU(1AU는 지구-태양 간 거리 1.5억km)로, 현재까지 가장 긴 주기를 가진 혜성의 하나로 기록되고 있는데, 그 주기가 무려 55만 8300년이다. 지난 75년에는 태양을 지나친 뒤 네 조각으로 쪼개지면서 장관을 연출했던 웨스트 혜성의 다음 도래년은 서기 569,282년이다. 우리 인류가 문명사를 엮어온 것이 고작 5000년인데, 과연 그때까지 이 지구 행성에서 살아남아, 웨스트 혜성이 태양을 향해 시속 34만km로 돌진해가는 장관을 다시 볼 수 있을까? 이광식 통신원 joand999@naver.com 
  • 혜성, 우주의 ‘공포 대마왕’인가?-③ ‘혜성들의 고향’

    혜성, 우주의 ‘공포 대마왕’인가?-③ ‘혜성들의 고향’

    혜성은 어디에서 오는가? 혜성의 고향을 알기 위해서는 먼저 그 기원을 알지 않으면 안된다. 널리 받아들여지는 혜성 기원론에 따르면, 혜성은 행성과 위성들이 만들어지고 남은 잔해이기 때문에 태양계만큼이나 오래된 천체라는 것이다. 이 잔해들이 해왕성 너머 30~50AU 공간에 납작한 원반 모양으로 분포하고 있는데, 이곳이 바로 단주기 혜성들의 고향으로 카이퍼 대라 한다. 장주기 혜성의 고향은 그보다 훨씬 멀리, 5만~15만AU 가량 떨어진 오르트 구름이다. 지름 약 2광년으로, 거대한 둥근 공처럼 태양계를 둘러싸고 있는 오르트 구름은 수천억 개를 헤아리는 혜성의 핵들로 이루어져 있다. 탄소가 섞인 얼음덩어리인 이 핵들이 가까운 항성이나 은하들의 중력으로 이탈하여 태양계 안쪽으로 튕겨들어 혜성이 되는 것이다. 이 혜성은 온도가 매우 낮은 태양계 바깥쪽에 있었기 때문에 태양계가 탄생할 때의 물질과 상태를 수십억 년 동안 그대로 지니고 있는 만큼 태양계 탄생의 비밀을 간직한 ‘태양계 화석’이라 할 수 있다. 단주기 혜성의 경우, 태양에서 목성과 해왕성 사이를 타원궤도를 그리며 운동한다. 태양계 내의 천체가 태양에서 가장 멀리 떨어져 있을 때의 거리를 원일점, 가장 가까이 있을 때의 거리를 근일점이라 하는데, 단주기 혜성은 원일점의 위치에 따라 목성족, 토성족, 천왕성족, 해왕성족으로 나누어진다. 예컨대, 가장 짧은 3.3년 주기의 엥케 혜성은 목성족, 76년 주기의 핼리 혜성은 해왕성족에 속한다. 장주기 혜성은 해왕성 바깥까지 갔다가 되돌아오는 길쭉한 타원궤도로, 대부분의 혜성이 이에 속한다. 원일점은 대략 1만~10만AU 정도 거리에 있다. 우주 속에 영원한 것이 어디 있으리오마는, 혜성의 경우는 더욱 극적이다. 태양의 인력에 이끌려 태양계 안으로 들어온 혜성들은 각기 다른 운명을 겪는데, 태양과 행성들의 인력에 따라 궤도가 달라져, 어떤 것은 태양계 밖으로 밀려나 다시는 돌아오지 못하고 우주의 미아가 되거나, 행성의 강한 인력으로 쪼개지기도 한다. 또 어떤 것은 태양이나 행성에 충돌하여 최후를 맞는 경우도 있다. 보통 혜성은 서울시만한 크기로, 혜성이 태양을 방문할 때마다 핵에서 약 1억 톤 가량의 물질을 방출하기 때문에 핵 표면이 약 3m씩 줄어든다고 한다. 엥케 혜성은 천 번 곧, 3,300년 후, 수백억 년을 사는 별에 비해서는 참으로 찰나의 삶을 사는 존재라 하겠다. 혜성은 궤도를 운행하면서 티끌이나 돌조각들을 궤도상에 흩뿌리는데, 이러한 혜성의 입자들이 혜성 궤도 주위에 모여 있는 것을 유성류(流星流)라 한다. 공전하는 지구가 이 유성류 속을 지날 때 지구 대기와의 마찰로 불타며 떨어지는데, 이것을 유성 또는 별똥별이라 하며, 많은 유성이 무더기로 떨어지는 것을 유성우(流星雨)라 한다. 유성우는 지구 대기권으로 평행하게 떨어지지만, 우리가 보기에는 하늘의 한 곳에서 떨어지는 것처럼 보인다. 이 중심점을 복사점이라 하고, 복사점이 자리한 별자리의 이름을 따라 유성우의 이름이 정해진다. 유성우 중에서는 특히 사자자리 유성우가 유명한데, 주기 33년의 템펠-터틀 혜성이 연출하는 것으로서, 매년 11월 17일과 18일을 전후하여 시간당 십수개에서 많은 경우 수십만 개의 유성이 떨어진다. 혜성이 지구가 형성되기 전부터 존재했다는 것은 알려져 있지만, 아직도 혜성의 많은 부분은 신비에 싸여 있다. 어떤 학자들은 혜성이 가져다준 물이 지구의 바다를 만들었다고 주장하기도 하고, 어떤 학자들은 지구에 생명의 씨앗과 생명의 물질을 공급해왔다는 주장도 한다. 한편, 중생대 말 공룡을 비롯한 지구상의 생물 대부분을 멸종시킨 거대한 재앙의 근원이 혜성 충돌 때문이라는 주장은 거의 정설로 굳어가고 있다. 만약 이러한 주장들이 사실이라면 혜성은 지구 생명의 창조자이자 파괴자이며, 인류의 미래와 운명에 직결되어 있는 존재인 셈이다. 마지막으로 장주기 혜성 하나. 1975년에 발견된 웨스트 혜성은 원일점이 13,560AU(1AU는 지구-태양 간 거리 1.5억km)로, 현재까지 가장 긴 주기를 가진 혜성의 하나로 기록되고 있는데, 그 주기가 무려 55만 8300년이다. 지난 75년에는 태양을 지나친 뒤 네 조각으로 쪼개지면서 장관을 연출했던 웨스트 혜성의 다음 도래년은 서기 569,282년이다. 우리 인류가 문명사를 엮어온 것이 고작 5000년인데, 과연 그때까지 이 지구 행성에서 살아남아, 웨스트 혜성이 태양을 향해 시속 34만km로 돌진해가는 장관을 다시 볼 수 있을까? 이광식 통신원 joand999@naver.com 
  • “안녕, 명왕성과 카론”...태양계 끝자락 모습 드러내는 ‘저승’

    “안녕, 명왕성과 카론”...태양계 끝자락 모습 드러내는 ‘저승’

    멀고 먼 태양계 끝자락에 위치한 '저승'이 서서히 모습을 드러내고 있다. 지난 23일(이하 현지시간) 미 항공우주국(NASA)은 탐사선 뉴호라이즌스가 촬영한 명왕성과 카론의 사진을 영상과 함께 공개했다. 지난 2006년 발사이후 무려 47억km를 날아가 현재 명왕성에 2500만km까지 접근한 뉴호라이즌스호는 이제 명왕성의 전체적인 윤곽이 보이는 사진을 지구로 전송하고 있다. 이번에 공개된 이미지는 지난달 29일부터 지난 19일까지 촬영된 탐사선의 '작품'을 정리한 것으로 명왕성과 카론의 지형 모습이 흐릿하게나마 보이는 것이 특징. NASA에 따르면 뉴호라이즌스는 다음달 14일 명왕성에 1만 2500㎞까지 접근해 연구에 충분한 보다 선명한 이미지를 보내올 것으로 기대되고 있다. 지금은 ‘134340 플루토’(134340 Pluto)라 불리며 행성 지위를 잃고 ‘계급’이 강등된 명왕성은 특이하게도 총 5개의 달을 가지고 있다. 각각의 이름은 카론(Charon), 케르베로스(Kerberos), 스틱스(Styx), 닉스(Nix), 히드라(Hydra)로 모두 그리스 신화에 나오는 저승과 관련이 있다. 이중 명왕성의 ‘물귀신’이 된 위성이 바로 죽은 자를 저승으로 건네준다는 뱃사공 카론이다. 애초 명왕성의 위성이라고 생각됐던 카론이 서로 맞돌고 있는 사실이 확인된 것. 그 이유는 이렇다. 지난 2006년 국제천문연맹(IAU)이 행성 분류 정의를 변경했는데 크게 3가지 조건이 붙었다. 첫째 태양 주위를 공전하며, 둘째 충분한 질량과 중력을 가지고 구(sphere·球) 형태를 유지해야 하며, 셋째 그 지역의 가장 지배적인 천체여야 한다. 문제는 2000년대 들어 카론 등 새로운 천체가 발견돼 명왕성의 지배적인 위치가 흔들리면서 시작됐다. 이에 유럽 천문학자들을 중심으로 투표를 통해 명왕성 행성 퇴출을 결정했다. 이에 가장 크게 반발한 것은 역시 미국이다. 태양계 행성 중 유일하게 미국인이 발견한 것은 물론 행성 퇴출 전 이곳에 뉴호라이즌스까지 보냈기 때문이다. 명왕성의 발견자는 LA 다저스 에이스 클레이튼 커쇼의 증조부인 천문학자 클라이드 톰보(1906-1997)로 특히 그의 유골 일부는 뉴호라이즌스호에 실려있기도 하다. 이같은 지구에서의 논쟁과는 별개로 뉴호라이즌스호는 나홀로 자신의 임무를 성실히 수행하고 있다. 특히 이 탐사선에는 임무와 별 상관없는 비밀품목들이 실려있다. 톰보의 유골 일부는 물론 미국 국기, 우표, 25센트 동전, 이름 43만 4000개가 실린 CD-ROM 등이 그것이다. 지난 2006년 1월 발사된 뉴호라이즌스는 오는 7월 14일 아직까지 알려진 것이 거의 없는 바로 이곳 ‘저승’에 도착한다. <뉴호라이즌스의 여정> * 2006년 1월 발사 * 2011년 3월 18일/천왕성 궤도를 지나다 * 2014년 8월 1일/ 해왕성 궤도를 지나다 * 2015년 7월 14일/국제 표준시(UTC) 기준 11시 47분 명왕성 접근 통과(명왕성에서 13,695km 거리, 초속 13.78km) * 2015년 7월 14일/국제 표준시(UTC) 기준 12시 01분 명왕성의 위성인 카론 접근 통과(카론에서 29,473km 거리, 초속 13.87km) * 2016년~2020년/카이퍼 띠 천체들 접근 통과 박종익 기자 pji@seoul.co.kr
  • 혜성, 우주의 ‘공포 대마왕’인가? -① 태양계 탄생 비밀 간직한 ‘방랑자’

    혜성, 우주의 ‘공포 대마왕’인가? -① 태양계 탄생 비밀 간직한 ‘방랑자’

    '공포의 대마왕' 우주에는 그 규모나 내용에서 우리의 상상을 초월하는 엄청난 사건들이 일어나고 있지만, 사람의 눈으로 볼 수 있는 천체현상 중 최고의 장관은 단연 혜성 출현일 것이다. 어떤 장대한 혜성의 꼬리는 태양에서 지구까지 거리의 2배에 달하며, 그 주기가 수십만 년을 헤아리는 것도 있다 하니 참으로 상상하기조차 힘든 일이다. 혜성이 남기고 간 부스러기라 할 수 있는 별똥별을 보며 소원을 빌어온 우리에겐 입이 딱 벌어질 스케일이라 하겠다. 태양계의 방랑자, 혜성은 태양이나 큰 질량의 행성에 대해 타원이나 포물선 궤도를 도는 태양계에 속한 작은 천체를 뜻하며, 우리말로는 살별이라고 한다. 혜성(彗星)의 ‘혜(彗)’가 ‘빗자루’라는 뜻에서도 알 수 있듯이, 빛나는 머리와 긴 꼬리를 가지고 밤하늘을 운행하는 혜성은 예로부터 고대인들에 의해 많이 관측되었다. 연대가 확실한 가장 오랜 혜성관측 기록으로는 기원전 1059년, 중국의 ‘주 나라 때 빗자루별이 동쪽에서 나타났다’는 기록이다. 유럽에서는 기원전 467년 그리스 사람들이 혜성 기록을 남겼다. 그리스 어로 혜성을 코멧(Komet)이라 하는데, 머리털을 뜻한다. 묘하게도 동서양이 혜성에 대해서는 하나의 일치된 관념을 갖고 있었는데, 그것은 혜성 출현이 불길한 징조라는 것이다. 왕의 죽음이나 망국, 큰 화재, 전쟁, 전염병 등 재앙을 불러오는 별이라고 믿었다. 고대인에게 혜성은 ‘공포의 대마왕’으로 두려움의 대상이었던 것이다. 혜성의 시차를 측정하여 혜성이 지구 대기상에서 나타나는 현상이 아닌 천체의 일종임을 최초로 밝혀낸 사람은 16세기 덴마크의 천문학자 튀코 브라헤였다. 이는 아리스토텔레스의 우주관을 뒤엎은 대단한 발견이었다. 아리스토텔레스는 달을 경계로 삼아 지상과 천상의 세계를 엄격하게 나누었는데, 무상한 지상의 세계와는 달리 천상은 세계는 변화가 없는 완전한 세계라고 주장했던 것이다. 그러나 튀코의 이 발견으로 천상의 세계 역시 무상하다는 것이 밝혀진 셈이다. 혜성이 태양계의 구성원임을 입증한 사람은 17세기 영국 천문학자 에드먼드 핼리였다. 1682년, 핼리는 어느 날 혜성을 본 후, 옥스퍼드 대학 도서관에 있던 옛날 혜성기록을 뒤져본 결과, 1456년, 1531년, 1607년에 목격된 혜성이 자기가 본 것과 비슷하다는 점을 깨닫고, “이 혜성은 불길한 일을 예시하는 별이 아니라, 76년을 주기로 지구 주위를 타원궤도로 도는 천체로, 1758년 다시 올 것이다“라고 예언했다. 그는 자신의 예언을 확인하지 못하고 죽었지만, 과연 1758년 크리스마스 밤에 이 혜성이 나타난 것을 독일의 한 농사꾼 아마추어 천문가가 발견했다. 이로써 이 혜성이 태양을 끼고 도는 하나의 천체임이 증명되었고, 핼리의 업적을 기리는 뜻에서 ‘핼리 혜성’이라 이름지어졌다. (2편에 계속) 이광식 통신원 joand999@naver.com 
  • 인류는 화성의 어느 지역에 첫 발을 내딛을까?

    인류는 화성의 어느 지역에 첫 발을 내딛을까?

    미국항공우주국(이하 NASA)가 이르면 2030년 화성에 첫 우주인을 보낼 예정인 가운데, 인류가 화성의 어느 지점에 첫 발자국을 남길 것인지를 두고 여전히 의견이 분분하다. NASA는 현지시간을 25일, 오는 10월 미국 휴스턴에서 워크숍을 열고 화성에 착륙이 가능한 지점과 관련한 다양한 의견을 주고받을 예정이라고 공식 발표했다. 4일간의 일정동안 화성에서 약 100㎞에 달하는 ‘탐사 가능 지역’(Exploration Zone) 중 어느 곳에 착륙을 진행할 것인지를 두고 의논할 예정이다. NASA가 지정한 탐사 지역은 표면아래에 얼음이 존재하는 등 천연자원이 풍부할 것으로 추정되는 지역이며, 동시에 인간이 발을 내딛고 생활하기에 안전한 지역으로 판단하고 있지만 100㎞범위 내에서 정확히 어느 지점에 우주선을 착륙시킬지에 대해서는 불분명한 상황이다. NASA 행성과학연구팀의 짐 그린 박사는 “뜨거운 논란이 시작될 것으로 예상된다”면서 “화성의 어느 지점에 정거장을 건축하고 또 이를 어떻게 가동할 것인지에 대한 정확한 정보가 자세한 논의가 필요하다”고 설명했다. 이를 위해 연구진은 화성궤도 탐사선인 화성정찰위성(MRO)을 십분 활용할 계획이다. 짐 그린 박사에 따르면 현재 MRO는 화설 표면의 3%에 해당하는 지형의 고화질 이미지를 전송하고 있다. 연구진은 MRO로부터 받은 데이터를 분석해 어느 지형에 연구할만한 천연자원이 가장 많은지 연구하는데 도움을 받고 있다. 짐 그린 박사는 “오는 10월에 열릴 학술 워크숍은 성공적인 화성 탐사를 위한 큰 걸음이 될 것”이라면서 “우리는 화성에 대해 더 많은 것을 알아야 하며 어떻게 화성에서 정착해야하는지에 대해 더 많은 이야기를 나눠야 한다”고 전했다. 한편 NASA가 ‘제2의 지구’라 일컫는 화성은 지구와 유사한 특징을 가지고 있다. 화성의 하루는 24시간 40분이며 지구와 비슷한 자전축을 가졌다. 극지방과 지하에 얼음 형태의 물이 존재하는 점도 지구와의 유사점으로 꼽힌다. 다만 전체 크기가 지구의 절반에 미치고 중력도 3분의 1에 불과하며, 특히 대기중 이산화탄소가 96%에 달하기 때문에 생명체가 생존하기에 어려움이 있다. 이에 전문가들은 화성에서 거주할 수 있는 특별한 생활공간을 만드는 작업이 필수적이며, 2030년대에 인류가 직접 발을 딛기 전까지 꾸준히 탐사로봇을 보내 정보를 수집할 예정이다. 송혜민 기자 huimin0217@seoul.co.kr
  • 혜성, 우주의 ‘공포 대마왕’인가? -② 핼리 혜성과 한 소설가의 슬픈 사연

    혜성, 우주의 ‘공포 대마왕’인가? -② 핼리 혜성과 한 소설가의 슬픈 사연

    핼리 혜성에는 한 소설가의 슬픈 사연이 얽혀 있다. '톰 소여의 모험', '허클베리 핀의 모험' 등으로 우리에게도 친숙한 마크 트웨인이 그 주인공으로, 그는 핼리 혜성이 온 1835년에 태어나서, 혜성이 다시 찾아온 1901년에 세상을 떠났다. 76년 주기인 혜성과 주기를 같이한 트웨인은 만년에 불우한 삶을 살았다. 70세 때 아내와 장녀인 수지가 같은 시기에 세상을 떠나고, 몇 년 후에는 셋째 딸마저 간질로 그 뒤를 따랐다. 남은 자식이라고는 둘째 딸 클라라뿐이었다. 그는 실의에 빠진 채 만년을 보냈는데, 유일한 즐거움은 과학책을 읽는 것이었다. "나는 1835년 핼리 혜성과 함께 왔다. 내년에 다시 온다고 하니 나는 그와 함께 떠나려 한다. 내가 만일 핼리 혜성과 함께 가지 못한다면 그것은 내 인생에서 가장 실망스러운 일이 될 것이다"라고 말했던 트웨인은 1910년 어느 날 밤 별이 뜰 무렵 둘째 달 클라라의 손을 잡고 “안녕, 클라라. 우린 꼭 다시 만날 수 있을 거야”라고 말을 남겼는데, 그때 핼리 혜성이 다시 지구를 찾아왔고, 트웨인은 그 이튿날 세상을 떠났다. 1910년 4월 21일이었다. 핼리 혜성이 가장 최근에 나타난 해는 1986년이었고, 다음 방문은 2061년으로 예약되어 있다. 필자뿐 아니라 현재 지구 행성에서 살고 있는 70억 인구 중 3분의 1은 그때 핼리 혜성이 태양을 향해 달려가는 장관을 볼 수 없을 것이다. 핼리 혜성은 7만 6000년 후에 수명을 다하게 된다. 핼리 혜성처럼 태양계 내에 붙잡혀 길다란 타원궤도를 가지고 주기적으로 태양을 도는 혜성을 주기 혜성이라 하고, 포물선이나 쌍곡선 궤도를 갖고 있어 태양에 딱 한 번만 접근하고는 태양계를 벗어나 다시는 돌아오지 않는 혜성을 비주기 혜성이라 한다. 주기 혜성은 200년 이하의 주기를 가지는 단주기 혜성과, 200년 이상 수십만 년에 이르는 주기를 가진 장주기 혜성으로 나누어진다. 혜성은 크게 머리와 꼬리로 구분된다. 머리는 다시 안쪽의 핵과, 핵을 둘러싸고 있는 코마로 나누어진다. 핵이 탄소와 암모니아, 메탄 등이 뭉쳐진 얼음덩어리라는 사실이 최초로 밝혀진 것은 1950년 미국의 천문학자 위플에 의해서였다. 그러니 혜성의 정체가 제대로 알려진 것은 반세기 남짓밖에 되지 않은 셈이다. 핵을 둘러싼 코마는 태양열로 인해 핵에서 분출되는 가스와 먼지로 이루어진 것으로, 혜성이 대개 목성궤도에 접근하는 7AU 정도 거리가 되면 코마가 만들어지기 시작한다. 우리가 혜성을 볼 수 있는 것은 이 부분이 햇빛을 반사하기 때문이다. 코마의 범위는 보통 지름 2만~20만km 정도로 목성 크기만 하기도 하고, 때로는 지구와 달까지 거리의 약 3배나 되는 100만km를 넘는 것도 있다. 혜성의 꼬리는 코마의 물질들이 태양풍의 압력에 의해 뒤로 밀려나서 생기는 것이다. 이 황백색을 띤 꼬리는 태양과 반대방향으로 넓고 휘어진 모습으로 생기며, 태양에 다가갈수록 길이가 길어진다. 꼬리가 긴 경우에는 태양에서 지구까지의 거리 2배만큼 긴 것도 있다니, 참으로 장관이 아닐 수 없겠다. 태양에 가까이 다가가면 두 개의 꼬리가 생기기도 하는데, 앞에서 말한 먼지꼬리 외에 가스 꼬리 또는 이온 꼬리라고 불리는 것이 생긴다. 태양 반대쪽으로 길고 좁게 뻗는 가스 꼬리는 이온들이 희박하여 눈으로는 잘 보이지 않지만, 사진을 찍어 보면 푸른색을 띤 꼬리가 길게 뻗어 있는 것을 볼 수 있다. 근래에 온 혜성으로 단연 화제를 모았던 것은 1994년 7월 16일 목성과 충돌한 슈메이커-레비9 혜성이었다. 21개로 쪼개어진 조각들이 목성의 남반구에 차례로 충돌했는데, 충돌 당시 전 세계의 관심을 모았으며, 방송에서는 큰 화제가 되기도 했다. 외계 물체 중 최초로 태양계의 물체에 충돌하는 장관을 실감나게 보여주었던 것이다. 혜성 탐사선으로는 미국의 스타더스트 호가 99년 2월에 발사되었다. 이 탐사선은 2004년 1월에 혜성 와일드 2로부터 표본을 채취해 지구로 돌아왔다. 또한 67P/추류모프-게라시멘코’ 혜성에 착륙을 시도하기 위한 유럽우주국의 로제타 호는 2004년 3월에 발사되었는데, 지난 2014년 11월 12일 로제타 호의 탐사 로봇 ‘필레’가 역사상 최초로 67P 혜성에 성공적으로 착륙했다. 현재 로제타 호는 태양에 접근해가는 혜성 궤도를 돌면서 같이 따라가고 있는 중이다. (3편에 계속) 이광식 통신원 joand999@naver.com 
  • ‘우주전쟁’ 서막?...美 “인공위성 작전센터 가동”

    ‘우주전쟁’ 서막?...美 “인공위성 작전센터 가동”

    미군이 자국 인공위성 방어 작전을 총괄할 새로운 작전센터를 설립할 것을 선언했다. 영국 일간 데일리메일 등 외신들은 펜타곤이 6개월 이내에 ‘우주전쟁 센터’ 가동을 시작할 계획을 발표했다고 25일(현지시간) 보도했다. 로버트 워크 미 국방부 차관은 지난 23일 워싱턴에서 열린 2015 지리공간정보(GEOINT) 심포지엄에서 한 연설을 통해 이와 같은 내용을 밝혔다. 이 연설에서 로버트 국방부 차관은 “적 세력이 미군의 우주 전력을 무력화한다면 분쟁 지역에 대한 우리 군의 첩보능력이 치명적 수준으로 약화될 것”이라며 “이전에 ‘사실상의 안전지대’였던 우주공간도 이제 군사 경쟁이 벌어지는 작전 지역으로 변모했다”는 말을 통해 우주전 대비의 중요성을 강조했다. 우주전쟁 센터는 총 50억 달러(약 5조 5000억 원)에 달하는 미 국방부 우주안보 예산을 통해 설립된다. 이 센터는 현재 운영 중인 모든 미국 인공위성들을 일괄적으로 관리·감독함으로써 인공위성 방어 역량을 크게 강화해줄 예정이다. 그러나 구체적 방어 수단이 무엇인지는 아직 밝혀진 바 없다. 이 센터는 인공위성 방어 뿐만 아니라 인공위성으로 수집한 데이터를 통합하는 기능도 수행함으로써 인공위성을 활용하는 각종 작전의 효율을 증대시켜줄 전망이다. 기존에 우주관련 작전을 담당하던 캘리포니아 반덴버그 공군기지 합동우주작전국(Joint Space Operations Center) 또한 존속시켜 우주전쟁 센터와 공동으로 작전을 수행토록 할 예정이다. 해외 군사 전문가들은 이번 센터 설립의 강력한 동기로 최근 점차 증강되는 중국과 러시아의 군사역량을 꼽고 있다. 특히 중국은 대(對)인공위성 공격능력을 과시했던 전력이 있다. 2007년에는 인공위성 공격용 탄도미사일을 발사, 저궤도(Low Earth Orbit)에 떠있던 자국 위성을 파괴하는 실험에 성공했으며 2010년에는 2007년 실험당시보다 높은 정지궤도(Geostationary orbit) 상의 위성을 파괴했던 것으로 추정되고 있다. 정지궤도는 대부분의 통신위성이 운행하는 고도다. 또 다른 요인은 크림반도를 합병하고 우크라이나를 약화시키며 점차 나토군을 위협하고 있는 러시아군에 대한 우려다. 한 전문가는 현지 국방 전문 매체 ‘브레이킹 디펜스’(Breaking Defense)와 한 인터뷰에서 “미국은 러시아의 최근 행보를 보며 잠재적 위협을 억제하는데 있어 국제법과 국제 규범이 별 효과를 발휘하지 못할 것이라고 생각하고 있다”고 설명했다. 사진=ⓒ미 공군 방승언 기자 earny@seoul.co.kr
  • [아하! 우주] 美 “우주전쟁 대비 ‘작전센터’ 6개월내 가동”

    [아하! 우주] 美 “우주전쟁 대비 ‘작전센터’ 6개월내 가동”

    미군이 자국 인공위성 방어 작전을 총괄할 새로운 작전센터를 설립할 것을 선언했다. 영국 일간 데일리메일 등 외신들은 펜타곤이 6개월 이내에 ‘우주전쟁 센터’ 가동을 시작할 계획을 발표했다고 25일(현지시간) 보도했다. 로버트 워크 미 국방부 차관은 지난 23일 워싱턴에서 열린 2015 지리공간정보(GEOINT) 심포지엄에서 한 연설을 통해 이와 같은 내용을 밝혔다. 이 연설에서 로버트 국방부 차관은 “적 세력이 미군의 우주 전력을 무력화한다면 분쟁 지역에 대한 우리 군의 첩보능력이 치명적 수준으로 약화될 것”이라며 “이전에 ‘사실상의 안전지대’였던 우주공간도 이제 군사 경쟁이 벌어지는 작전 지역으로 변모했다”는 말을 통해 우주전 대비의 중요성을 강조했다. 우주전쟁 센터는 총 50억 달러(약 5조 5000억 원)에 달하는 미 국방부 우주안보 예산을 통해 설립된다. 이 센터는 현재 운영 중인 모든 미국 인공위성들을 일괄적으로 관리·감독함으로써 인공위성 방어 역량을 크게 강화해줄 예정이다. 그러나 구체적 방어 수단이 무엇인지는 아직 밝혀진 바 없다. 이 센터는 인공위성 방어 뿐만 아니라 인공위성으로 수집한 데이터를 통합하는 기능도 수행함으로써 인공위성을 활용하는 각종 작전의 효율을 증대시켜줄 전망이다. 기존에 우주관련 작전을 담당하던 캘리포니아 반덴버그 공군기지 합동우주작전국(Joint Space Operations Center) 또한 존속시켜 우주전쟁 센터와 공동으로 작전을 수행토록 할 예정이다. 해외 군사 전문가들은 이번 센터 설립의 강력한 동기로 최근 점차 증강되는 중국과 러시아의 군사역량을 꼽고 있다. 특히 중국은 대(對)인공위성 공격능력을 과시했던 전력이 있다. 2007년에는 인공위성 공격용 탄도미사일을 발사, 저궤도(Low Earth Orbit)에 떠있던 자국 위성을 파괴하는 실험에 성공했으며 2010년에는 2007년 실험당시보다 높은 정지궤도(Geostationary orbit) 상의 위성을 파괴했던 것으로 추정되고 있다. 정지궤도는 대부분의 통신위성이 운행하는 고도다. 또 다른 요인은 크림반도를 합병하고 우크라이나를 약화시키며 점차 나토군을 위협하고 있는 러시아군에 대한 우려다. 한 전문가는 현지 국방 전문 매체 ‘브레이킹 디펜스’(Breaking Defense)와 한 인터뷰에서 “미국은 러시아의 최근 행보를 보며 잠재적 위협을 억제하는데 있어 국제법과 국제 규범이 별 효과를 발휘하지 못할 것이라고 생각하고 있다”고 설명했다. 사진=ⓒ미 공군 방승언 기자 earny@seoul.co.kr
  • [아하! 우주] 태양계 끝자락 서서히 모습 드러내는 ‘저승’

    [아하! 우주] 태양계 끝자락 서서히 모습 드러내는 ‘저승’

    멀고 먼 태양계 끝자락에 위치한 '저승'이 서서히 모습을 드러내고 있다. 지난 23일(이하 현지시간) 미 항공우주국(NASA)은 탐사선 뉴호라이즌스가 촬영한 명왕성과 카론의 사진을 영상과 함께 공개했다. 지난 2006년 발사이후 무려 47억km를 날아가 현재 명왕성에 2500만km까지 접근한 뉴호라이즌스호는 이제 명왕성의 전체적인 윤곽이 보이는 사진을 지구로 전송하고 있다. 이번에 공개된 이미지는 지난달 29일부터 지난 19일까지 촬영된 탐사선의 '작품'을 정리한 것으로 명왕성과 카론의 지형 모습이 흐릿하게나마 보이는 것이 특징. NASA에 따르면 뉴호라이즌스는 다음달 14일 명왕성에 1만 2500㎞까지 접근해 연구에 충분한 보다 선명한 이미지를 보내올 것으로 기대되고 있다. 지금은 ‘134340 플루토’(134340 Pluto)라 불리며 행성 지위를 잃고 ‘계급’이 강등된 명왕성은 특이하게도 총 5개의 달을 가지고 있다. 각각의 이름은 카론(Charon), 케르베로스(Kerberos), 스틱스(Styx), 닉스(Nix), 히드라(Hydra)로 모두 그리스 신화에 나오는 저승과 관련이 있다. 이중 명왕성의 ‘물귀신’이 된 위성이 바로 죽은 자를 저승으로 건네준다는 뱃사공 카론이다. 애초 명왕성의 위성이라고 생각됐던 카론이 서로 맞돌고 있는 사실이 확인된 것. 그 이유는 이렇다. 지난 2006년 국제천문연맹(IAU)이 행성 분류 정의를 변경했는데 크게 3가지 조건이 붙었다. 첫째 태양 주위를 공전하며, 둘째 충분한 질량과 중력을 가지고 구(sphere·球) 형태를 유지해야 하며, 셋째 그 지역의 가장 지배적인 천체여야 한다. 문제는 2000년대 들어 카론 등 새로운 천체가 발견돼 명왕성의 지배적인 위치가 흔들리면서 시작됐다. 이에 유럽 천문학자들을 중심으로 투표를 통해 명왕성 행성 퇴출을 결정했다. 이에 가장 크게 반발한 것은 역시 미국이다. 태양계 행성 중 유일하게 미국인이 발견한 것은 물론 행성 퇴출 전 이곳에 뉴호라이즌스까지 보냈기 때문이다. 명왕성의 발견자는 LA 다저스 에이스 클레이튼 커쇼의 증조부인 천문학자 클라이드 톰보(1906-1997)로 특히 그의 유골 일부는 뉴호라이즌스호에 실려있기도 하다. 이같은 지구에서의 논쟁과는 별개로 뉴호라이즌스호는 나홀로 자신의 임무를 성실히 수행하고 있다. 특히 이 탐사선에는 임무와 별 상관없는 비밀품목들이 실려있다. 톰보의 유골 일부는 물론 미국 국기, 우표, 25센트 동전, 이름 43만 4000개가 실린 CD-ROM 등이 그것이다. 지난 2006년 1월 발사된 뉴호라이즌스는 오는 7월 14일 아직까지 알려진 것이 거의 없는 바로 이곳 ‘저승’에 도착한다. <뉴호라이즌스의 여정> * 2006년 1월 발사 * 2011년 3월 18일/천왕성 궤도를 지나다 * 2014년 8월 1일/ 해왕성 궤도를 지나다 * 2015년 7월 14일/국제 표준시(UTC) 기준 11시 47분 명왕성 접근 통과(명왕성에서 13,695km 거리, 초속 13.78km) * 2015년 7월 14일/국제 표준시(UTC) 기준 12시 01분 명왕성의 위성인 카론 접근 통과(카론에서 29,473km 거리, 초속 13.87km) * 2016년~2020년/카이퍼 띠 천체들 접근 통과 박종익 기자 pji@seoul.co.kr
  • 이 참에 내 집 마련, 화성 남양뉴타운 랜드마크 프리미엄 잡아볼까

    이 참에 내 집 마련, 화성 남양뉴타운 랜드마크 프리미엄 잡아볼까

    실수요를 중심으로 거래량이 늘어나고 신규 분양시장이 활기를 띠면서 부동산시장 회복에 대한 기대감이 커지고 있다. 저금리 기조에 집주인들이 전세를 월세로 돌리며 전세난이 한층 심화된 상황이다 보니 이 참에 새 집 장만으로 발길을 돌리는 매매전환 움직임도 가속화되는 추세다. 미분양 아파트 물량들도 빠르게 소진되고 있다. 국토교통부에 따르면 4월 전국의 미분양 가구 수는 1만 2638호로 지난 1월 1만 5351호 보다 2713호나 줄었다. 특히 1만 3507호에 달했던 3월 미분양 물량이 한 달 만에 869호가 감소한 것으로 나타났다. 특히 분양가상한제 폐지 이후 신규 아파트 분양가가 오르다 보니 분양가상한제를 적용 받는 미분양 아파트가 대안으로 주목 받는 분위기다. 양우건설이 경기도 화성시 남양뉴타운에 선보인 ‘화성 남양 2차 양우내안애 에듀타운’ 아파트도 최근 부쩍 수요자들의 관심이 집중되며 막바지 분양에 탄력을 받고 있다. 선착순 동호지정 계약에 나선 이 아파트는 분양가상한제를 적용 받아 기존 아파트 단지와 가격 차이가 거의 없고 계약금 500만원(1차)에 중도금 전액 무이자 지원 조건으로 분양 중이다. 여기에 발코니 확장계약을 하면 안방과 작은방 붙박이장 등 14종의 무상시공 혜택도 제공된다. 분양 관계자는 “안산 등 주변 지역 아파트 매매가격이 오르면서 상대적으로 가격 경쟁력이 좋아 보이는 반사효과를 얻는 것 같다”며 “서해안 복선전철 사업까지 본궤도에 오르자 수혜단지로 지목되며 수요자들의 관심이 높아지고 있다”고 전했다. 화성 남양 2차 양우내안애 에듀타운은 경기도 화성시 남양뉴타운 B-2블록에 지상 최고 26층 9개동 460세대 규모로 들어서 있다. 단지는 전용면적 74㎡,84㎡ A,B,C타입으로 실수요자들의 선호도가 높은 중소형으로 구성돼 있다. 이미 100% 마감으로 성공리에 분양을 마친 옆 블록(B-3)의 양우내안애 1차 398세대와 함께 총 858세대의 브랜드 타운을 형성하게 돼 랜드마크 프리미엄이 기대되고 있다. 공간활용을 극대화한 평면 설계도 눈에 띈다. 전 세대 4Bay이상의 설계가 적용됐으며 전용 84㎡B타입은 중소형에도 불구하고 멀티룸을 적용한 5Bay가 실현됐다. 이 외에도 최신 트렌드를 반영해 대형 팬트리 및 아일랜드 주방, 안방 워크인 드레스룸 및 워크인 수납장 등을 강화했다. 단지 내 잔디공원으로 이어지는 산책로, 예술장식품이 설치되는 대규모 커뮤니티 광장, 초화원, 주민운동공간, 테마놀이터 등의 친환경 조경시설이 조성된다. 이 밖에 피트니스클럽, 작은 도서관, 골프연습장 등이 포함된 입주민 커뮤니티센터가 들어선다. 뛰어난 교육여건을 자랑하는 교육특화아파트로서 단지 내 유치원이 들어서고 바로 앞 초등학교 예정부지도 있다. 자녀들이 안전하게 걸어서 통학할 수 있는 거리에 동양초, 남양중, 남양고 등 초중고교가 있으며 시립도서관이 가깝다. 인근에는 학원가도 잘 형성돼 있다. 교통환경을 살펴보면 단지는 차로 5분이면 비봉IC, 서해안고속도로, 경부고속도로 이용이 가능하다. 서서울 TG를 이용하면 서울 도심까지 빠르게 연결되며 39번 및 77번국도,15번 및 153번국도를 통해 인천~안산~평택 등 서부권으로의 이동이 수월하다. 또한 평택~화성간 고속도로,평택~시흥간 고속도로(제2서해안고속도로)까지 개통돼 주변 지역 진출입도 편리하다. 오는 2020년 송산~동탄간 고속도로(제2외곽순환도로)가 개통되며 인근에 들어설 화성시청역(예정)을 통해 서울까지 약 30분 내 이동 가능한 쾌속 교통망이 갖춰질 전망이다. 견본주택은 경기도 화성시 남양읍 북양리 317-2번지에 위치해 있다.분양문의: 1670-5200 나우뉴스부 nownews@seoul.co.kr
  • [아하! 우주] 지구 위협하는 소행성…영화처럼 미국이 구할까?

    [아하! 우주] 지구 위협하는 소행성…영화처럼 미국이 구할까?

    할리우드 SF 영화는 허무맹랑한 이야기 같지만 한편으로는 실제 이루어질 미래의 예고편인 것 같다. 최근 뉴욕타임스는 미 항공우주국(NASA)과 핵안전보안국(National Nuclear Security Administration·NNSA)이 지구와 충돌 가능성 있는 소행성을 '핵무기'로 파괴하는 프로젝트를 공동으로 시작했다고 보도했다. 사실 소행성이 지구에 떨어져 인류 멸망을 가져온다는 이야기는 할리우드 영화의 단골 소재지만 전혀 허황된 이야기는 아니다. 지난 2월 영국 옥스퍼드 대학 인간 미래 연구소가 세상을 종말로 이끄는 12가지 시나리오 중 하나로 소행성 충돌을 꼽을 정도. NASA가 파악해 공개한 ‘잠재적 위험 소행성’(potentially hazardous asteroids·PHAs)은 대략 1400개. 특히 지난해 NASA의 우주비행사 출신 에드 루 박사 등이 참여해 만든 비영리단체 ‘B612 파운데이션’은 지난 2000년부터 2013년 사이 무려 26번이나 작은 도시 하나를 날려 버릴만한 소행성이 지구에 떨어졌다고 발표해 세상을 깜짝 놀라게 한 바 있다. 이중에는 지난 2013년 세상을 떠들썩 하게 만든 러시아 첼랴빈스크에 떨어진 소행성도 포함돼 있다. 보도에 따르면 그간 NASA와 NNSA는 소행성을 핵무기로 '타격'하는 연구를 각자 진행해 왔으며 이번 공동 프로젝트를 통해 로켓과 핵 전문가가 참여해 보다 진전된 결과를 내올 것으로 기대된다. 그렇다면 NASA와 NNSA는 역설적이지만 핵무기로 어떻게 지구를 지킬 수 있을까? 현재 이에대한 연구도 미국 내 각 대학을 중심으로 진행 중이다. 지구로 날아오는 소행성에 핵무기를 발사, 그 방향을 바꾸거나 산산조각내는 것이 대표적인 계획. 이에 앞서 지난 4월에도 NASA는 유럽우주기구(ESA)와 힘을 합쳐 지구를 위협하는 소행성을 파괴해 인류를 구하는 AIDA(Asteroid Impact & Deflection Assessment) 계획을 발표한 바 있다. 마치 ‘지구 방위대’를 연상시키는 이 프로젝트는 지구와 충돌 위험이 있는 소행성을 산산조각내는 것이 아닌 충격을 가해 그 궤도를 일부 바꿔 위험을 사전에 제거하는 방식이다. 두 우주기구가 발표한 계획도 구체적이다. 테스트 대상에 오른 소행성은 지름 170m의 디디문(Didymoon). 오는 2022년 지구에 1100만 km 까지 접근할 예정인 디디문은 그 거리 때문에 인류에 피해를 줄 가능성은 없지만 테스트에는 최적이다. 먼저 시작은 ESA가 한다. ESA는 오는 2020년 탐사선 AIM(Asteroid Impact Mission)을 디디문으로 발사해 1년 동안 이 소행성의 지도 작성, 표면 조사 등 충돌에 필요한 모든 데이터를 수집한다. 이후 임무는 NASA가 맡는다. 이듬해 NASA는 우주선 DART(Double Asteroid Redirection Test)를 발사해 시속 2만 km 속도로 날아가 디디문의 궤도를 수정할 만한 최적의 지점과 충돌한다. 만약 테스트가 성공적으로 끝나면 향후 이 방식으로 지구를 위협할 소행성을 사전에 막아낼 수 있을 것이라는 것이 양대 우주기구의 설명이다. 박종익 기자 pji@seoul.co.kr
  • 우리 태양이 행성 ‘강탈범’이라고?

    우리 태양이 행성 ‘강탈범’이라고?

    -소행성 세드나는 강탈한 천체이다 외부 태양계의 어떤 천체들은 지나가는 별들에게서 '강탈'한 것이라는 연구 결과가 발표되어 관심을 끌고 있다. 2003년에 발견된 소행성 세드나는 약 40억 년 전 부근을 지나던 별에게서 빼앗은 것일 가능성이 높으며, 그 과정에서 우리 태양은 수백 개의 소행성들을 잃어버린 것으로 보인다고 논문은 말하고 있다. 세드나가 왜 다른 행성들에 비해 기괴할 정도로 길죽한 궤도를 갖고 있는가에 대한 해답은 이 '강탈'에 있다고 연구자들은 보고 있다. 세드나는 1930년 명왕성이 발견된 이래 태양계로부터 가장 먼 곳에서 발견된 소천체로, 궤도는 심한 이심률을 가진 타원형이며, 태양에 가까운 근일점은 지구와 명왕성간 거리의 약 3배, 원일점은 그 10배 정도의 거리에까지 이르는 기형적인 것이다. 세드나의 크기는 명왕성의 반 정도, 반지름은 약 500km, 공전주기는 1만1400년이지만, 태양까지의 거리는 해왕성에 비해 2~20배까지에 이른다. 세드나가 왜 이렇게 괴상한 궤도를 도는 것인지에 대해 천문학자들은 지금까지 골머리를 앓아왔다. 그런데 이번 라이덴 천문대의 루시 옐코바(Lucie Jílková) 박사가 이끄는 연구팀이 세드나의 궤도에 대해 '강탈' 가설을 내놓은 것이다. 옐코바 박사와 그 연구팀은 우리 태양에게 세드나를 강탈당한 가능성이 있는 별 1만 여 개에 대한 시뮬레이션 결과를 '뉴 사이언티스트(New Scientist)' 지에 발표했다. 그들은 모델에 완벽하게 일치하는 잠재적 피해 항성 하나를 발견하여 'Q'라는 이름표를 붙였다. 외부 태양계를 떠도는 세드나의 모항성, 이른바 '세드니토스'의 후보로 떠오른 별들의 수는 열 개가 넘으며, 이들의 근원지는 아직 미스터리로 남아 있다. 연구팀은 40억 년 이전에 우리 태양 질량의 약 80% 남짓한 별이 해왕성 궤도 거리의 11배쯤 되는 태양계 바깥을 지나다가 태양에게 세드나를 빼앗긴 것으로 보고 있다. 이 과정에서 태양은 수백 개의 얼음 소행성들을 잃어버린 것으로 추정되고 있다. 두 별 사이에 일어난 중력적인 혼란의 여파로 수백 개의 소행성들이 우주 속으로 내동댕이쳐진 것이다. 비록 지금까지 발견된 소행성은 얼마 되지 않지만, 세드나는 소행성들이 모여 있는 카이퍼 띠와 그 바깥 태양계를 떠도는 수천 개의 소행성 중 하나이다. 그러나 이들 소행성이 태양계 초기의 잔여 물질인 것과는 달리 세드나를 비롯해 기형적인 궤도를 도는 천체들은 전혀 다른 기원을 갖고 있는 천체인 셈이다. 이 우주적인 강탈 사건의 확실한 물증을 잡으려면 세드나까지 가서 그 구성물질을 조사해보는 것이 가장 확실한 방법이다. 세드나가 다른 카이퍼 띠의 소행성과 성분이 전혀 다르다면 이 가설은 정설이 되겠지만, 하지만 인류가 세드나로 가는 일은 백 년 안에는 이루어지지 않을 것으로 보인다. 이광식 통신원 joand999@naver.com 
  • [재계 인맥 대해부 (4부)뜨고 지는 기업&기업인 동부그룹] ‘승부사’ 김준기 회장의 뚝심 경영 46년… 위기 딛고 다시 선다

    [재계 인맥 대해부 (4부)뜨고 지는 기업&기업인 동부그룹] ‘승부사’ 김준기 회장의 뚝심 경영 46년… 위기 딛고 다시 선다

    동부그룹은 2015년 현재 국내 재계에서 창업주가 활발하게 경영활동을 이어가고 있는 몇 안 되는 대기업이다. 1969년 건축업으로 시작했던 업종이 철강과 금융, 전자 등으로 꾸준히 확대된 배경에는 매번 중요한 순간마다 승부수를 던졌던 김준기 회장의 결단력과 뚝심이 자리잡고 있다. 김 회장이 만 24세였던 1969년 직원 2명과 함께 자본금 2500만원으로 시작한 미륭건설이 지금의 동부그룹의 모태가 됐다. 당시 이미 600여개 건설사들이 경쟁을 벌이고 있던 ‘레드오션’(치열한 경쟁시장)에서 김 회장은 틈새시장을 노렸다. 연세대 이공대 건물 등 민간 발주 공사와 영국대사관, 독일문화원, 용산미군기지 등 외국인 발주 공사를 집중 공략했다. 미륭건설은 신생사였기 때문에 도급순위가 낮아 정부 발주의 대형 공사는 발주가 불가능했기 때문이었다. 착실히 사업을 키워 나간 미륭건설이 지금의 동부그룹으로 성장할 수 있었던 결정적 계기는 사우디아라비아의 주베일 해군기지 공사 입찰이었다. 1974년 당시 국내 수주 사상 최대 규모였던 4800만 달러 규모의 공사를 수주하고 이를 성공적으로 수행하면서 미륭건설(현 동부건설)은 그룹으로 성장할 수 있는 자금과 발판을 마련하게 된다. 미륭건설은 당시 이 공사에서만 1600만 달러의 이익을 남겼다. 주베일 해군기지 공사 이후 미륭건설은 2억~4억 달러에 달하는 대형 공사 수주에 잇따라 성공하면서 1980년 중동에서 철수하기까지 5년 동안 20억 달러를 벌어들였다. 이후 중동에서 성공한 자금을 바탕으로 김 회장은 차근차근 사업의 영역을 확대했다. 직원 2명으로 시작했던 건설사가 그룹사로 발돋움하기 시작한 것이다. ‘동부’(東部)라는 이름은 1971년 동부고속이 설립되면서 처음 쓰였다. ‘도전과 개척’(東) ‘안정과 풍요로움’(部)을 상징하는 뜻의 ‘동부’는 계열사 사명으로 하나둘씩 쓰이기 시작하다 1989년 미륭건설을 동부건설로 개명하면서 그룹명으로 정해졌다. 김 회장은 1983년 한국자동차보험을 인수해 금융업으로 사업 영역을 확대했다. 당시 총적자 규모가 2000억원에 달한 것으로 알려졌던 한국자동차보험은 집중적인 노력으로 경영정상화를 이뤘다. 이어 정부가 30년 만에 금융시장을 개방하면서 동부그룹은 동부투자금융(현 동부증권)과 동부생명 등으로 금융업을 확대했다. 금융업은 현재 제조업과 함께 동부그룹의 양대 축이기도 하다. 김 회장은 이어 1985년 ‘장영자·이철희 어음 사기 사건’과 함께 부도를 맞았던 일신제강을 인수하면서 제조 분야의 사업 영역을 확대했다. 김 회장은 인수와 함께 그해에 사명도 동부제강(현 동부제철)으로 변경했다. 이어 합금철(동부메탈), 특수강(동부특수강) 등으로 철강 분야의 폭도 점차 키워 나갔다. 아울러 여객운송업을 주로 하던 동부고속 역시 물류와 하역, 창고 업종을 추가시켜 육상운송전문 종합운수회사인 동부익스프레스로 탈바꿈시켰다. 이와 함께 반도체 사업에도 손을 댔다. 1983년 미국 몬산토사와 국내 최초로 반도체용 실리콘웨이퍼 제조회사인 실트론을 합작 설립하면서 전자 분야에 발을 들여 놓았다. 김 회장은 이후 1997년 시스템반도체 파운드리 업체인 동부전자를 세운 뒤 현재의 동부하이텍으로 사명을 바꿨다. 당시 삼성전자를 비롯한 국내 대기업들이 선택한 메모리 반도체가 아닌 비메모리 반도체를 선택한 동부하이텍은 지난해 창사 이래 처음으로 흑자(영업이익 455억원)에 성공하며 사업의 본궤도에 올랐다. 김 회장이 20년에 가까운 기간 동안 뚝심 있게 사업을 지켜온 결과였다. 동부그룹은 그러나 2008년 미국발 세계 금융위기에 따른 유동성 위기와 철강 등 업황 악화를 이기지 못하고 혹독한 구조조정을 거쳤다. 2015년 현재 동부그룹의 중심 축은 동부화재를 중심으로 한 금융계열사와 대우전자가 전신인 대우일렉트로닉스를 인수해 운영 중인 동부대우전자 등을 중심으로 하는 제조계열사 두 축만 남았다. 그럼에도 재계에서는 여전히 동부그룹의 재기 가능성을 남겨 두고 있다. 매 순간 승부수를 던지고 그 결정을 성공으로 이끌어 왔던 김 회장에 대한 기대감이 자리하고 있기 때문이다. 박재홍 기자 maeno@seoul.co.kr
  • [이광식의 천문학+] 우주는 왜 붕괴되거나 찢어지지 않는가? -벤틀리의 역설

    [이광식의 천문학+] 우주는 왜 붕괴되거나 찢어지지 않는가? -벤틀리의 역설

    만유인력의 법칙을 밝힌 뉴턴의 '프린키피아'는 1687년에 출간되었다. “나는 이제 세계의 기본 얼개를 선보이겠다”는 뉴턴의 자랑스런 선언을 담고 있는 이 책은 뉴턴 물리학을 집대성 것이었다. '프린키피아'에서 뉴턴은 행성의 운동을 비롯하여, 조석의 움직임, 진자의 흔들림, 사과의 낙하 같은 다양한 현상들을 단일한 원리로 통일하고, 다시 그것을 수학적으로 완벽하게 제시했다. 신과 같은 이 놀라운 솜씨는 마침내 지상의 물리학과 천상의 물리학을 하나로 통합했던 것이다. 이것은 일찍이 갈릴레오가 그토록 이루기를 갈망했으나 끝내 성공하지 못했던 것이었다. 뉴턴 이전에는 땅의 세계와 하늘의 세계가 엄격히 구분돼 있었다. 땅의 세계는 불완전한 사멸과 변화의 세계고, 천상의 세계는 비물질적이며 완전하고 불변하는 신의 세계였다. 그러나 뉴턴으로 인해 우주에서 비물질적이고 관념적인 것들은 모두 제거되고 하나의 법칙으로 통합되었으며, 인류는 문명사 6000 년 만에 비로소 우주를 이성적으로 사고할 수 있게 된 것이다. ​ 뉴턴이 찾아낸 만유인력의 법칙은 한마디로 우주 안의 모든 것들이 하나의 법칙으로 작동하고 있다는 것이며, 그것을 문장으로 표현하면 다음과 같다. "모든 물체는 각기 질량의 힘으로 서로 끌어당긴다. 이 힘은 두 물체의 질량의 곱에 비례하며, 두 물체 사이 거리의 제곱에 반비례한다." 이를 수식으로 나타내면 허망할 정도로 단순하다. F = G m1 m2/r^2(F는 인력, G는 만유인력 상수, m1, m2'는 두 물체의 질량, r은 두 물체 사이의 거리) 이 간단한 방정식 하나로 우주 안의 만물은 서로 감응한다. ‘나’라는 존재도 온 우주의 만물과 서로 중력을 미치며, 사과 한 알이 떨어져도 온 우주가 감응한다는 뜻이다. 뉴턴 역학이 전하는 복음은 분명했다. 한마디로, 이 세계는 모두 우주 역학의 결과이며, 모든 천체들이 고유한 중량과 그것들의 운행에서 나오는 힘들에 의해 움직이고 있다. 행성운동은 말할 것도 없고, 우주 안에서 일어나는 모든 현상은 원자들의 상호관계에서 일어나는 역학의 결과이다. 그러므로 이 세계 안에 우연이란 것은 없다. 말하자면 모든 것은 결정되어 있다는 '결정론적 우주관'이다. 이 같은 내용을 담고 있는 '프린키피아'는 출간되자마자 많은 논쟁을 불러일으켰다. 그중에는 ‘우주는 유한한가, 무한한가’라는 유서 깊은 논쟁도 있었다. 예리한 논리로 ‘우주는 태어난 지 오래지 않다’라고 추론했던 고대 로마의 철학자 루크레티우스(BC 96년경 ~ BC 55)는 이에 대해 다음과 같은 사려깊은 결론을 내린 바 있다. “우주는 모든 방향으로 무한히 뻗어 있다. 만일 우주에 끝이 있다면 그 끝을 이루는 경계가 있어야 하고, 이는 곧 우주의 바깥에 또 무언가가 존재한다는 뜻이다. (...) 그런데 우주를 이루는 모든 차원들은 아무런 방향성도 없고, 그 바깥에 무언가 존재한다는 것도 확인된 바 없으므로 우주는 끝이 없어야 한다.” 뉴턴의 중력 이론은 우주가 유한하든 무한하든 모순을 피할 수 없게 된다. 리처드 벤틀리라는 한 성직자가 뉴턴에게 편지를 보내 이 점을 지적했다. "중력이라는 것이 작용거리가 무한하고 한 방향으로만 작용하는 힘이라고 할 때, 만약 우주가 무한하다면 별들은 각기 임의의 물체를 중력으로 잡아당길 것이고, 그렇다면 우주는 각자의 방향으로 찢어져 혼돈에 찬 종말을 맞이할 것입니다. 만약 우주가 유한하다면 별들은 서로의 중력에 의해 끌어당길 것이고, 우주는 결국 하나의 점으로 붕괴되어 충돌하는 처참한 종말을 맞이할 것입니다." 이것이 바로 중력이론을 우주에 적용할 때 나타나는 역설적인 결과를 최초로 지적한 ‘벤틀리의 역설’로, 올베르스의 역설과 함께 천문학 역사상 유명한 역설에 속한다. 뉴턴 역시 중력 이론의 모순을 알고 있었다. 심사숙고 끝에 내놓은 뉴턴의 대책은 이런 것이었다. “우주공간에 떠 있는 하나의 별이 무한히 많은 다른 별들에 의해 당겨지고 있다면, 오른쪽으로 끌어당기는 힘과 왼쪽으로 끌어당기는 힘이 서로 상쇄될 것이다. 모든 별들이 이런 식으로 균형을 이루고 있기 때문에 정적인 우주가 유지된다. 그러려면 우주는 무한하며 균일해야 한다.” 그러나 이 정적인 균형은 위태로운 것이다. 별 하나만 요동쳐도 일시에 균형이 와해되어 파국을 맞을 수 있기 때문이다. 자신의 해법이 만족스럽지 못하다는 것을 안 뉴턴은 이런 대형사고를 피하기 위해 신의 자비를 구하며 다음과 같이 편지를 마무리했다. “태양과 항성들의 중력에 의해 한 점으로 붕괴되지 않으려면 주기에 따라 태엽시계에 시간을 돌려서 맞추듯이 우주의 시계에도 전지전능한 신의 도움이 가끔씩은 필요할 것입니다.” 지금에서 보면 황당한 얘기처럼 들릴 수도 있는 말이지만, '프린키피아' 자체를 인간에게 신의 길을 가르치기 위한 노작으로 보는 뉴턴으로서는 무난한 결론이기도 할 것이다. 오히려 과학이란 단지 물리적 우주를 이해하려는 시도일 뿐이라는 현대의 견해를 뉴턴이 듣는다면 크게 놀랄 것이 틀림없으니까. 어쨌든 뉴턴은 이 만유인력의 발견으로 모든 시대를 통틀어 가장 위대한 천재, 마호메트와 예수 다음으로 인류 역사를 바꾼 인물로 평가받는 과학자가 되었으며, 인류는 뉴턴 역학으로 인해 우주에 대해 깊은 이해에 도달할 수 있는 열쇠를 갖게 된 것이다. 지금도 지구 궤도를 돌고 있는 수많은 인공위성들의 궤도 계산이나 로켓 발사, 그리고 우주 탐사선의 우주 여행 등이 모두 300여 년 전에 확립된 뉴턴의 이론적 모델에 기초하고 있다는 사실만 보더라도 뉴턴의 공적이 얼마나 큰 것인지 알 수 있다. 이러한 이유 등으로 사람들은 뉴턴을 가리켜 ‘신의 마음에 가장 가까이 간 사람’이라 평하기도 한다. 자, 이제 '벤틀리의 역설'의 정답을 말해보자. 정답은 첫째, 은하 내의 별들이 중력을 거슬러 서로의 거리를 유지하는 것은 은하 중심을 공전하고 있기 때문이다. 이는 행성들이 공전함으로써 태양과의 거리를 유지하는 것과 같은 이치다. 둘째, 은하들이 한 점으로 붕괴되지 않는 것은 '빅뱅 우주론'에 의한 우주팽창 때문이다. 여기에는 물론 암흑 에너지도 한몫한다. 우리가 잘 알다시피 우주는 결코 뉴턴 생각처럼 정적이 아니며, 인력에 반하는 팽창력이 척력으로 작용함으로써, 은하나 별들이 한 점으로 붕괴되거나 찢어지는 일 없이 지금의 상태를 유지하고 있는 것이다. 이는 천하의 천재인 뉴턴도 상상하지 못한 일일 것이다. 우주란 얼마나 오묘한가! 이광식 통신원 joand999@naver.com 
  • “’달 지평선 빛’ 정체는 기울어진 먼지 띠” [NASA]

    “’달 지평선 빛’ 정체는 기울어진 먼지 띠” [NASA]

    미국항공우주국(이하 NASA)이 달에서 먼지로 이뤄진 ‘링’(Ring)을 발견했다. NASA 소속 천문학자들은 달 주변에서 밀도가 비교적 높은 거대한 먼지 구름을 발견했으며, 이는 마치 목성의 띠처럼 기울어진 채 달 주변을 에워싸고 있다고 밝혔다. 이 먼지 띠는 달 주변에 항상 존재하며, 전문가들은 아폴로 우주선의 우주비행사들이 태양이 떠오를 때 달 지평선에서 목격한 기이한 잔광(빛)의 정체가 이것이었을 것으로 추측하고 있다. 띠를 이루고 있는 이 달 먼지는 매우 작은 티끌 알갱이로 이뤄져 있고, 전기성질을 가져 공중으로 날아오르는 특성이 있다. 달 주변에 치우쳐진 채 존재하는 먼지 구름의 특성을 찾아낸 것은 NASA의 달 대기 및 먼지 관측용 궤도선 라디(Lunar Atmosphere and Dust Environment Explorer, LADEE)다. 미국 콜로라도대학 볼더캠퍼스의 물리학자 미할리 호라니 박사는 “우주 먼지들이 태양계에서 어디에 위치해 있는지를 아는 것은 매우 중요한 일”이라면서 “이를 알면 미래에 인류가 우주를 탐사할 때 우주선이나 우주비행사들을 위협할 수 있는 먼지 입자를 피하는데 도움이 될 것”이라고 설명했다. 특히 이번 발견은 래디 탐사선에 장착된 LDEX(Lunar Dust Experiment) 분석장비가 큰 역할을 했다. 우주 대기중의 입자를 살피는 LDEX는 콜로라도대학 볼더캠퍼스 연구진이 개발한 것으로, 2013년 9월 미션을 시작한 뒤 다양한 데이터를 전송해 왔다. 라디는 2013년 발사된 뒤 주어진 임무를 모두 마치고 지난해 4월 달 표면과 충돌했다. NASA 연구진은 약 6개월 간의 미션 기간동안 라디와 LDEX가 보내온 데이터를 분석해 달 표면에 영구적인 먼지 띠가 존재한다는 사실을 밝혀냈다. 한편 이번 발견은 네이쳐지 최신호에 실릴 예정이다.   송혜민 기자 huimin0217@seoul.co.kr
  • [재계 인맥 대해부 (4부) 뜨고 지는 기업&기업인 대명그룹] 건설서 출발해 불모지 ‘레저산업’ 개척… 굴지의 리조트그룹으로

    [재계 인맥 대해부 (4부) 뜨고 지는 기업&기업인 대명그룹] 건설서 출발해 불모지 ‘레저산업’ 개척… 굴지의 리조트그룹으로

    대명그룹의 창업주 고 서홍송 명예회장은 1953년 경북 청송에서 1남 2녀중 막내로 태어났다. 서 명예회장은 어렵게 얻은 아들이다. 젊은 시절 외향선을 탄 부친 고 서용달씨는 7대조까지 모시는 종손이었지만 아들이 없었다. 모친 고 김수강씨는 아들 하나만 점지해 달라며 마을 큰바위 앞에 나가 삼신할미에게 정성을 쏟았다. ‘호사다마’였는지 아들을 얻었지만 가세는 기울었고 부친도 곧 세상을 떠났다. 어릴 적 서 명예회장은 ‘말수가 적었던 아이’였다. 말이 없고 내성적인 아이는 또래 아이들에게 맞고 오는 일이 다반사였다. 모친은 아들을 태권도장에 보냈다. 태권도는 그를 자신 있고 적극적인 성격으로 변화시켰다. 20대에는 도민체전 대표로 출전할 정도로 실력이 출중했고, 한때 사무실 위에 도장을 차릴 정도로 태권도에 대한 애정도 남달랐다. 그는 당시 방위사업체이던 풍산금속 공정 담당기사로 첫 취직을 했다. 모두가 어려웠던 시절 풍산은 좋은 회사였다. 월급이 생기자 그는 평소 하고 싶던 일을 해 나갔다. 주말마다 경주 나이트클럽을 찾거나 오토바이를 타고 동쪽 해안을 달렸다. 하지만 소모적인 생활은 오래가지 않았다. 그럴 만큼 넉넉한 가정도 아니었고 외동아들이라 결혼도 서둘러야 했다. 부인 박춘희(61)씨를 만난 것도 이때쯤이다. 가정을 갖고 책임감이 생기면서 그는 자기 일을 하고 싶다는 꿈을 꾸게 됐다. “손수레 장사를 하더라도 내 일을 하고 싶어” 퇴근 후 아내에게 던진 한마디가 사업가로서의 그를 만든 시발점이다. 사표를 던지기 전 그는 자신의 집 인근에 집 한 채를 지었다. 경험을 쌓는 게 중요하다는 생각에서였다. 결국 27세 되던 1979년 그는 사표를 내고 대명주택을 차렸다. 회사를 꾸렸지만 돈은 부족했다. 그가 한 첫 번째 일은 여름철 포항 칠포해수욕장에서 피서용품을 파는 일이었다. 작은 회사는 불과 6년 만인 1985년 포항을 대표하는 주택건설 회사로 성장한다. 훗날 서 명예회장은 남다른 고객 서비스가 있었기에 가능했다고 회고했다. 그가 정한 서비스 원칙은 3가지다. ▲소비자 불만 전화가 오면 이유를 불문하고 달려가라 ▲당일 해결이 안 되면 다음날 반드시 처리해라 ▲작은 고장도 무조건 수리한다였다. 서 명예회장은 1986년 12월 동원토건을 인수하면서 대명주택 본사를 서울로 이전했다. 지역에 머물러서는 성장에 한계가 있다는 판단에서 내린 결론이다. 주변에선 말리는 이가 많았다. 인맥도 학연·지연도 없는 서울에서의 사업은 무모한 도전일 뿐이라고 입을 모았다. 그는 회사명을 대명주택에서 대명건설로 바꾸고 제2의 도전에 나섰다. ‘눈 감으면 코 베어 간다’는 서울이었지만 사업은 성공적이었다. 1987년 강서운전면허시험장을 착공하는 등 외주사업이 늘면서 현장 경험이 풍부한 경력사원들이 속속 합류했다. 다른 회사만큼 일해서는 살아남을 수 없다는 생각에 임직원 모두가 앞만 보고 달렸다. 매출은 매년 비약적으로 늘었다. 대명건설은 해마다 100% 이상 성장을 거듭했다. 당시 한국의 건설사는 5000여개. 동원토건 인수 후 첫해 건설사 도급 순위는 338위었으나 1995년에는 133위로 급성장했다. 건설 분야가 성장 궤도에 올라서자 서 명예회장은 ‘레저산업’이라는 또 하나의 도전을 결심한다. 서 명예회장은 입버릇처럼 “한국에서 최고 가는 레저기업을 만들고 싶다”고 되뇌었다.1980년대부터 중산층이 형성됐고 ‘마이카’ 시대가 도래했지만 여전히 대다수에게 레저란 단어는 생소할 때다. 1989년 9월 설악콘도 기공식을 열었지만 목표는 단순한 콘도건설이 아니었다. 잠시 머물고 가는 숙박시설이 아닌 쉬면서 놀이를 즐길 수 있는 종합 레저타운을 구상했다. 지금의 대명 비발디파크(구 홍천 레저타운)가 탄생한 배경이다. 대명레저산업은 1990년에 설립된 설악리조트에 이어 양평콘도(1992년), 비발디파크(1994년), 홍천과 설악 골프장(1997년)을 오픈하는 등 공격적인 확장을 이어간다. 덕분에 1990년대 중반 대명은 자타가 공인하는 종합 리조트 그룹으로 자리매김하게 됐다. 승승장구하던 대명에도 커다란 시련이 닥쳤다. 외환위기가 시작된 1997년. 회사 부채는 약 2000억원에 이르렀다. 회사 규모나 연매출 등을 고려하면 부채 규모가 큰 편이 아니라고 판단한 게 화근이었다. 당시 급속하게 얼어붙은 경기가 발목을 잡았다. 은행마저 부도를 걱정하던 때인 만큼 빠른 성장만을 보이던 레저 분야의 매출은 급락했다. 굴지의 기업마다 구조조정 바람이 불면서 대명 역시 더는 버틸 수 없는 상황을 맞았다. 결국 1998년 6월 대명건설과 대명레저산업이 부도를 맞았다. 다행히도 대명은 최단시간(6개월)인 같은 해 12월 화의인가를 받았다. 급여가 깎이는 상황에서도 참고 인내해 준 직원들의 노력과 헌신이 무엇보다 큰 도움이 됐다. 하지만 어렵게 얻어낸 화의인가에도 대명은 어려운 시간을 견뎌야 했다. 2011년 가을 미국에서 터진 9·11테러는 회복 기미가 보이지 않던 전 세계 경제에 찬물을 끼얹었다. 그해 11월 22일. 당시 서 명예회장은 단양콘도 분양에 사활을 걸고 사방으로 뛰어다니고 있었다. 여느 때처럼 업무를 마친 후 퇴근하던 서 명예회장이 쓰러졌다. 소식을 접한 직원들은 과로 누적 정도일 것으로 여겼지만 그는 결국 일어나지 못했다. 하지만 불과 몇 달 후 거짓말같이 살아난 부동산 경기로 인해 마지막까지 걱정하던 콘도 분양은 성공적으로 마감됐다. 결국 2003년 8월 대명레저산업은 조기에 화의를 졸업하게 됐지만 서 명예회장은 그 기쁨을 누리지 못했다. 유영규 기자 whoami@seoul.co.kr
  • ‘헬륨 대기’ 행성, 그곳에 가면 목소리 달라질까?

    ‘헬륨 대기’ 행성, 그곳에 가면 목소리 달라질까?

    -NASA " 우리 은하계에 흔하게 존재" 가끔 방송 등에서 웃기려고 풍선 속 가스를 들이마시고 목소리를 우스꽝스럽게 변조하는 장면이 나온다. 이때 마신 가스가 헬륨이다. 이 재미있는 가스인 '헬륨' 대기를 가진 행성들이 우리가 있는 은하계에 즐비하다는 연구결과가 발표되었다. 지난 수십 년간 과학자들은 수천 개의 외계 행성들을 찾아냈다. 이렇게 많은 외계 행성을 발견하게 되자 자연스럽게 그다음 관심은 외계 행성의 존재를 넘어 과연 이 행성들이 어떤 특징을 가졌는지에 쏠리고 있다. 지구 같은 행성은 우리 은하계에 얼마나 흔한지, 그리고 외계 행성들은 어떤 독특한 특징을 가졌는지가 궁금해진 것이다. 최근 미항공우주국(NASA)의 제트 추진 연구소(JPL)의 과학자들은 학술지 천체 물리학 저널(Astrophysical Journal)에 발표한 논문에서 우리 은하계에는 헬륨이 풍부한 해왕성 크기나 그보다 작은 외계 행성이 매우 흔한 것 같다는 연구 결과를 발표했다. 연구팀은 외계 행성 탐사에서 혁혁한 성과를 거둔 케플러 우주 망원경과 NASA의 스피처 적외선 우주 망원경 관측 데이터를 바탕으로 이와 같은 주장을 내놨다. NASA의 케플러 우주 망원경은 태양 근처에 별에서 해왕성이나 해왕성보다 약간 작은 외계 행성 수백 개를 발견했다. 이들 외계 행성들은 우리 태양계의 해왕성과는 달리 자신의 모항성에서 매우 가까운 궤도를 공전하고 있다. 따라서 이들은 따뜻한 해왕성(warm Neptunes)이라고 분류된다. NASA 제트 추진 연구소의 레뉴 후(Renyu Hu, NASA Hubble Fellow at the agency's Jet Propulsion Laboratory in Pasadena, California)와 그의 동료들은 이와 같은 관측 사실과 스피처 적외선 우주 망원경에서 관측한 데이터를 바탕으로 이 행성들이 어떤 대기 구조를 가졌는지 연구했다. 이들은 따뜻한 해왕성이 헬륨 위주의 대기를 가지고 있다는 가설을 세웠다. 이런 형태의 대기를 가진 행성들은 태양계에는 없다. 연구팀은 따뜻한 해왕성의 생성 위치와 환경이 이와 같은 독특한 대기를 만들었다고 보고 있다. 우주에는 수소와 헬륨이 아주 풍부하다. 우리 태양계의 거대 가스 행성들은 대부분 내부에 암석의 핵을 가지고 있고 외부에는 수소와 헬륨으로 된 거대한 가스층을 가지고 있다. 밀도의 차이를 생각하면 내부에는 철이나 암석 같은 무거운 물질이 있고 밖으로 갈수록 수소나 헬륨 같은 가벼운 기체로 구성된 것이 일반적인 가스 행성의 구조일 것이다. 그런데 따뜻한 해왕성들은 모항성에 너무 가까이 있다. 대부분 그 공전궤도가 수성보다도 가깝다. 따라서 그 표면 온도는 매우 뜨겁다. 오랜 시간이 지나면서 뜨겁게 가열된 수소는 점차 행성의 표면에서 달아나게 된다. 이와 같은 일이 10억 년 정도 계속되면 따뜻한 해왕성에 있는 수소 가스는 대부분 사라지게 된다. 그러면 상대적으로 무거운 헬륨만이 남아 헬륨 행성이 되는 것이다. 이 이론을 검증하기 위해 연구팀은 스피처 우주 망원경 관측을 통해 따뜻한 해왕성 가운데 하나인 GJ 436b를 연구했다. 이 행성에는 태양계의 거대 가스 행성에서 볼 수 있는 메탄 구름의 존재가 없는 것으로 나타났다. 수소와 탄소가 결합한 메탄은 수소가 풍부한 태양계의 가스 행성에서는 쉽게 관측할 수 있는 분자다. 그러나 GJ 436b에서는 탄소의 존재는 발견할 수 있었으나 메탄의 존재는 발견되지 않았다. 이는 수소가 사실 거의 없다는 가설을 지지하는 증거다. 여기에 이 행성에서는 탄소가 산소 원자와 결합한 일산화탄소가 풍부하게 발견되었다. 이는 수소가 고갈된 상황에서 탄소가 다른 원자와 결합했다고 설명하면 쉽게 이해될 수 있다. 연구팀은 다른 따뜻한 해왕성에서도 비슷한 관측 결과가 나오는지 연구하고 있다. 더 많은 연구가 필요하겠지만, 우주에는 우리 태양계와는 전혀 다른 독특한 행성들이 다수 존재할 것이다. 이를 직접 탐사하는 것은 먼 미래의 일이 되겠지만, 과학자들은 지구에서 망원경을 통해 이들을 계속 탐사할 것이다. 고든 정 통신원 jjy0501@naver.com
  • [우주를 보다] 반대로 도는 토성의 ‘역주행 위성’ 포이베

    [우주를 보다] 반대로 도는 토성의 ‘역주행 위성’ 포이베

    태양계의 위성 가운데도 역주행하는 위성들이 있다. 보통 위성은 행성의 자전 방향과 같은 방향으로 공전하지만, 역행성 궤도(retrograde orbit) 위성들은 삐딱하게 반대 방향으로 공전한다. 대개 이런 역행성 궤도 위성은 달처럼 행성과 같이 탄생한 위성이 아니라 지나가던 소행성이 포획되어 위성이 된 경우다. 이런 역주행 위성 가운데서 가장 흥미로운 대상은 바로 토성의 위성 포이베(Phoebe)다. 이 위성은 1898년 처음 발견된 이래 2000년대에 새로운 위성들이 밝혀지기 전까지 토성에서 가장 먼 거리를 공전하는 위성이었다. 그 거리는 평균 1,295만km에 달한다. 공전 주기도 550일에 달해 지구의 공전 주기보다 더 길다. 본래 토성의 위성이 아니었다가 우연히 포획되어 위성이 되었다고 생각하면 이해가 되는 거리다. 그런데 정말 흥미로운 이야기는 2004년 미국항공우주국(NASA)의 카시니 우주선이 포이베에 2,000km 정도 떨어진 거리까지 근접해 관측한 이후다. 포이베는 약 200km 조금 넘는 지름을 가진 감자처럼 생긴 위성인데, 그 표면이 극단적으로 검었다. 이 위성의 알베도(빛을 반사하는 정도)는 0.06으로 석탄보다 더 어두운 위성이었다. 여기에 표면에는 수많은 거대 크레이터가 있어 많은 충돌을 겪었다는 사실을 알 수 있었다. 한편 2009년, 다른 과학자팀은 NASA의 스피처 적외선 우주 망원경을 이용해서 한 가지 놀라운 사실을 밝혀냈다. 그것은 토성의 주변에 아주 어두운 작은 입자로 구성된 거대한 고리가 있다는 것이다. 이 고리의 최대 지름은 토성 지름의 200배가 넘는 엄청난 크기였다. 본래 우리가 아는 토성의 고리는 전체 고리에 일부에 불과하다. 예를 들어 토성의 E 고리의 경우 너비가 무려 30만km에 달하는 큰 고리지만, 입자의 밀도가 낮아 잘 보이지 않는다. 그런데 새롭게 발견된 고리는 E 고리마저 작게 보일 만큼 거대한 고리였다. 과학자들은 카시니의 포이베 관측 결과와 스피처 망원경의 관측 결과를 종합해 이 고리가 포이베가 다른 천체와 충돌하면서 생성된 것이라는 결론을 내렸다. 따라서 새로운 고리의 이름은 포이베 고리(Phoebe ring)이라고 명명되었다. 아마도 포이베의 독특한 궤도가 잦은 충돌의 이유가 되었을지 모른다. 그리고 그 충돌 파편들이 검은 입자가 많은 포이베 고리의 기원이 된 것으로 보인다. 최근 메릴랜드 대학 및 버지니아 공대의 과학자들은 NASA의 다른 적외선 관측 위성인 WISE의 데이터를 이용해서 포이베 고리가 생각보다도 더 거대하다는 사실을 밝혀냈다. 이들의 새로운 관측 결과에 의하면 고리의 범위는 토성에서 640만km에서 1,600만km까지 펼쳐져 있다고 한다. 물론 포이베 고리는 대부분 작고 어두운 입자로 구성되어 있으며 밀도가 낮아서 적외선 영역에서만 관측할 수 있다. 아무리 좋은 광학 망원경이라도 인간이 볼 수 있는 파장인 가시광 영역에서는 이 고리를 보기 어렵다. 그래서 이제야 발견이 된 것이다. 종종 눈으로 보이는 것이 전부가 아닐 때가 있다. 토성의 고리에서 이 말은 전적으로 옳다. 이 발견 전까지 우리가 아는 토성의 고리는 정말 눈으로 보이는 극히 일부에 불과했다. 아마도 이 점은 토성의 고리뿐 아니라 다른 우주의 신비도 마찬가지일 것이다. 고든 정 통신원 jjy0501@naver.com 
  • 쌍안경으로 소행성 팔라스 볼 수 있다!

    쌍안경으로 소행성 팔라스 볼 수 있다!

    이번 주 팔라스가 ‘충’에 도달 태양계에서 두 번째로 큰 소행성 팔라스(Pallas)를 이번 주에 볼 수 있다. 팔라스가 작은 쌍안경만 있으면 볼 수 있는 위치와 밝기인 태양의 정반대 쪽인 ‘충’(衝)의 자리에 왔기 때문이다. 팔라스는 ‘올베르스의 역설’로 유명한 천문학자 하인리히 올베르스가 1802년 발견한 소행성 2번이다. 지름 608㎞로 소행성 중 두 번째 크기이며, 공전주기 4.6년, 궤도의 긴 반지름 2.8AU(천문단위)이다. 이 팔라스의 발견으로 소행성이 1개가 아님을 알게 되었으며, 그 후 수천 개의 소행성이 발견되었다. 11일 팔라스가 충의 자리에 온 위치는 헤르쿨레스자리에서 네 번째로 밝은 4등성 람다 별 근처이다. 팔라스는 일주일에 1도(보름달 크기의 2배)씩 서진하고 있는데, 앞으로 3주 후면 헤르쿨레스자리의 델타 별인 3등성 사린에 근접한다. 충에 달한 이후 팔레스의 밝기는 9.4등급이다. 이때는 쌍안경으로 봐도 팔라스의 뚜렷한 자태를 감상할 수 있다. 지구로부터의 거리는 약 2.4AU, 3억 6천만km 정도 되는데, 1AU는 태양-지구 간 거리인 1.5억km이다. 소행성들이 최초로 발견되기 시작한 것은 19세기 초로, 1801년에서 1806년까지 6년 동안 팔라스를 포함하여 4개의 소행성이 처음으로 발견되었다. 그 후 38년간 잠잠하다가 1845년에 이르자 20년간 수십 개의 소행성이 무더기로 발견되었다. 나중에 사진술이 발명되자 소행성 발견의 숫자는 기하급수적으로 늘어나 1923년에는 1000번째 소행성이 발견되었으며, 2013년 1월 30일 기준 35만 3926개의 소행성에 공식적으로 숫자가 부여되었다. 소행성 발견 초창기에 천문학자들은 소행성을 작은 행성이라고 생각했지만, 무더기로 발견되기 시작하자 이들을 위한 특별 범주를 만들어 ‘소행성’(asteroids)이라는 이름을 붙여주었다. 이 말은 ‘항성과 닮은’이라는 뜻이다. 대부분의 소행성은 암석으로 이루어져 있으며, 화성과 목성 사이에 있는 소행성대에서 태양 궤도를 돌고 있다. 이 소행성대에 수많은 소행성이 모여 있지만, 영화나 게임 화면에서 보듯이 그렇게 복작대고 있는 것은 아니다. 대부분 공간은 텅 비어 있으며, 한 소행성 위에서 가장 가까운 소행성을 보려 해도 쌍안경이 필요할 정도로 뚝 떨어져 있다. 따라서 두 소행성이 충돌할 확률은 거의 영(0)에 가깝다. 최초로 발견된 소행성 세레스는 지름 952km로 명왕성, 에리스와 함께 왜소행성으로 재분류되었다. 팔라스와 베스타는 크기가 거의 비슷해, 각각 524km, 512km이다. 지름이 10m 이하인 것은 '유성체'라고 한다. 소행성에 대한 인류의 탐사 노력도 꾸준히 계속되어, 미국의 니어 슈메이커호(號)는 253 마틸다 소행성에 접근한 데 이어, 2001년에는 433 에로스 소행성에 착륙하는 데 성공했으며, 2005년에는 일본의 하야부사 탐사선이 이토카와 소행성에 착륙하여 표본을 수집하기도 했다. 소행성을 관측하려면 쌍안경이 필요하다. 쌍안경으로 보면 희미한 별처럼 보이지만, 밝은 별들을 배경으로 빠르게 움직이는 것을 확인할 수 있다. 이광식 통신원 joand999@naver.com
  • [아하! 우주] NASA, 바다가 출렁거리는 그곳 유로파로 간다

    [아하! 우주] NASA, 바다가 출렁거리는 그곳 유로파로 간다

    미항공우주국(NASA)의 야심찬 차세대 유로파 미션은 바다를 품고 있는 목성의 위성에 대한 활발한 연구 캠페인으로 시작될 것 같다. ​2020년대 중반까지 NASA는 유로파 탐사선을 띄울 계획인데, 이 탐사선은 유로파를 수십 차례 근접비행할 것으로 보인다. 우주생물학자들은 태양계에서 외계 생명을 품고 있을 가능성이 가장 높은 곳으로 유로파를 꼽고 있다. NASA의 과학자들은 이 유로파 탐사선이 미래에 유로파에 착륙하여 생명 탐색을 하는 데 있어 전 단계의 작업을 수행할 것이라고 밝혔다. 지름이 3,100km에 달하는 '유로파'는 지구의 달보다 약간 작은 편이다. 그러나 유로파는 지구의 밤을 밝히는 달과는 영 딴판인 위성이다. 표면은 얼음으로 뒤덮여 있으며, 그 아래 바다가 출렁거리고 있는 것이다. 과학자들은 이 바다의 밑바닥은 유로파의 암석 맨틀일 것으로 보고 있다. 다양한 성분의 암석과 물이 화학적인 반응을 일으켜 거기서 '생명이 태어나지 않았을까' 하고 예측되고 있는데, 이러한 이유로 유로파는 우주생물학자들이 가장 가고 싶어하는 곳이 되었다. 그들의 꿈은 멀지않아 이루어질 것으로 보인다. NASA는 지난 5월 26일, 앞으로 20년 내에 유로파 탐사선에 실려 날아간 9개의 과학장비들이 유로파의 바다에 투척될 것이라고 밝혔다. 장비 중에는 고해상도 카메라를 포함해 얼음 투과 레이더, 열감지기 등이 포함되어 있다. 유로파 탐사선은 목성 궤도에 진입한 후 2년 반 동안 유로파를 근접비행하면서 이 장비들을 이용해 유로파의 얼어붙은 표면과 지하 바다를 연구할 예정이다. 아직은 이름이 지어지지 않은 유로파 근접비행 미션의 최종 목표는 외계 생명체의 증거를 찾는 것이 아니라, 유로파가 과연 생명을 서식할 만한 능력이 있는가를 규명하는 것이다. 유로파에서 생명체를 찾는 것은 참으로 흥미로운 주제이지만, NASA는 아직 이 단계에까지는 아무런 논평을 내놓지 않고 있다. 유로파 미션 기자회견에서 NASA의 유로파 미션 팀장 커트 니버는 "생명탐지기를 제작하는 일은 정말 어려운 작업이다. 과연 그것을 만들 수 있을지는 장담할 수 없다"고 밝혔다. 또한 "아직까지 유로파의 표면이 어떤지도 파악하지 못하고 있다. 평평한지 요철이 심한지, 또는 바위 투성이인지도... 표면 상태를 확실히 알아야 착륙 로봇을 설계할 수 있다"고 말했다. 게다가 로봇은 지표를 뚫고 바다로 진입해야 한다. 찰스 볼든 NASA 국장은 "하지만 2020년대 중 유로파로 갈 것이며 첫번째 미션에서 가능한 한 모든 시도를 하려고 한다"고 설명했다. NASA의 유로파 미션은 먼저 45차례의 근접비행부터 시작해서 궤도비행, 그리고 탐사 로봇의 착륙으로 진행될 예정이다. 이광식 통신원 joand999@naver.com 
위로