찾아보고 싶은 뉴스가 있다면, 검색
검색
최근검색어
  • 물리학자
    2025-12-10
    검색기록 지우기
  • 이슬람국가(IS)
    2025-12-10
    검색기록 지우기
  • 현대자동차
    2025-12-10
    검색기록 지우기
  • 할머니
    2025-12-10
    검색기록 지우기
  • 라이더컵
    2025-12-10
    검색기록 지우기
저장된 검색어가 없습니다.
검색어 저장 기능이 꺼져 있습니다.
검색어 저장 끄기
전체삭제
1,844
  • 스티븐 호킹이 남긴 마지막 말은… “신은 없다”

    스티븐 호킹이 남긴 마지막 말은… “신은 없다”

    슈퍼휴먼 등장 점쳐… 시간여행도 언급“신은 없다. 그러나 외계의 지적 생명체들은 존재한다.” 지난 3월 타계한 이론 물리학자 스티븐 호킹 박사가 유고집을 통해 인류사에서 가장 논쟁적이면서도 도전적인 이 명제에 대한 견해를 밝힌 것으로 나타났다. 영국 선데이타임스와 미 CNN방송은 16일(현지시간) 유족과 동료들이 호킹 박사가 집필하다 미완성으로 남겨둔 저술 내용을 출간한 ‘어려운 질문에 대한 간략한 답변’(Brief Answer to the Big Question)이라는 제목의 유고집 내용을 소개했다. 호킹 박사는 유고집에서 “누구도 우주를 관장하지 않는다”는 견해를 밝혔다. 21세에 루게릭병으로 시한부 인생을 선고받고 평생 투병했던 호킹 박사는 “수백 년간 나 같은 장애인은 신이 내린 저주 속에 산다고 믿어 왔지만, 모든 것은 자연의 법칙으로 설명할 수 있다”고 자신했다. 그는 생전 여러 차례 무신론적인 입장을 드러낸 바 있다. 호킹 박사는 ‘슈퍼 휴먼’의 등장도 점쳤다. 유전자 편집 기술을 통해 만들어질 새로운 인류의 출현을 장담한 셈이다. 그는 “금세기 안에 인간은 지능과 공격성 등 모든 본능을 조작할 방법을 찾을 것이며 미래 인류는 슈퍼 휴먼이 지배하고 경쟁하게 될 것”이라고 말했다. 아울러 외계 생명체의 존재와 인간을 뛰어넘는 인공지능(AI), 시간여행도 유고집에 언급됐다. 호킹 박사는 “지적인 외계 생명체들이 존재하지만 (그 질문에 대한) 답을 내놓는 건 조심할 필요가 있다”고 밝혔다. 마지막 장에서 호킹 박사는 “어떻게 미래를 만들 것인가”라는 물음에 대해 지난 2012년 런던패럴림픽에서 자신이 했던 말로 끝맺었다. “당신의 발을 내려다보지 말고 고개를 들어 하늘의 별을 바라보는 것을 기억하라.” 안동환 기자 ipsofacto@seoul.co.kr
  • 금 만드는 우주폭발 ‘킬로노바’…“생각보다 흔해” (NASA)

    금 만드는 우주폭발 ‘킬로노바’…“생각보다 흔해” (NASA)

    금(金) 같이 세상에서 가장 희소한 원소를 생성하는 거대한 폭발 현상이 우주 전역에서 정기적으로 일어날 수 있음을 시사하는 연구 결과를 미국항공우주국(NASA)이 16일(현지시간) 발표했다. 이른바 ‘킬로노바’(Kilonova·메크로노바 또는 R-과정 초신성이라고도 한다)로 알려진 이 현상은 두 개의 중성자별이 충돌하면서 고에너지의 입자로 이뤄진 강력한 제트를 우주 공간으로 방출할 때 발생하는 빛을 말한다. 이때 금은 물론 백금, 우라늄과 같이 무거운 원소가 대량으로 생성된다. 지난해 10월 16일 킬로노바가 처음 발견됐을 때 각국의 천문학자와 물리학자로 이뤄진 한 연구팀은 ‘두 중성자별의 병합’으로 추정되는 광원에서 빛과 중력파를 처음으로 동시 검출한 사실을 발표했다. 이 폭발은 우주의 구조를 뒤흔들어 시공간을 왜곡했고, 이는 천체물리학계의 새로운 장을 연 것으로 여겨졌다. 이후 천문학자들은 이 역사적인 사건과 직접적인 관계가 있는 현상을 새롭게 확인했으며 이런 현상이 지금까지 생각보다 훨씬 더 흔할 수 있다고 주장한다. 이번 연구를 주도한 NASA의 엘레노라 트로자 연구원은 “이는 하나밖에 감지되지 않았던 현상이 두 개가 된 큰 진전”이라고 말했다. 새롭게 확인된 폭발은 지난 2015년 NASA의 닐 게릴스 스위프트 천문대에 의해 위치가 확인됐던 ‘감마선 폭발(GRB) 150101B’다. NASA 찬드라 X선망원경과 허블우주망원경(HST), 그리고 디스커버리채널망원경(DCT)의 후속 관측에 따라 GRB150101B는 지난해 레이저간섭계중력파관측소(LIGO)에 의해 발견됐으며 여러 집광 망원경에 의해 관측됐던 중성자별의 병합인 ‘중력파(GW) 170817’과 주목할 만큼 비슷한 점을 공유하는 것으로 나타났다. 이번 연구는 이처럼 서로 다른 두 천체가 실제로 직접적인 연관성이 있을 수 있음을 보여준다. 트로자 연구원은 “이번 발견은 GW170817과 GRB150101B 같은 사건이 완전히 새로운 종류의 폭발 현상을 나타내는 것일 수 있으며 이런 현상은 실제로 비교적 흔할 수 있다는 것을 보여준다”고 말했다. 연구에 참여한 NASA의 제프리 라이언 연구원은 “두 천체는 똑같아 보이고 똑같이 행동하며 비슷한 이웃 출신이므로 가장 간단하게 설명하면 이들은 같은 종류의 천체에서 나왔다는 것”이라고 말했다. GRB150101B와 GW170817이라는 두 가지 사례 모두 폭발은 비축(off-axis)으로, 즉 제트가 직접 지구를 향하지 않은 상태에서 확인됐을 가능성이 있다. 지금까지 천문학자들이 확인한 이런 사건은 두 번의 ‘비축 단기지속 감마선폭발’(off-axis short GRB)이다. GRB150101B의 광학적 방출은 스펙트럼상에서 대부분이 파란색 부분이며 이 사건은 GW170817에서 관측됐듯이 또다른 킬로노바의 중요한 단서를 제공한다. 트로자 연구원은 “모든 새로운 관측은 우리가 스펙트럼상의 고유 흔적이 있는 킬로노바를 확인하는 방법을 더 많이 배울 수 있도록 해준다”면서 “예를 들면 은은 파란색을 내지만 금과 백금은 빨간색을 내는 것”이라고 설명했다. 또 “우리는 중력파 관측 자료 없이도 이 같은 킬로노바를 확인할 수 있었으므로, 미래에는 감마선폭발을 직접 관측하지 않고도 이 작업을 수행할 수 있을 것”이라고 말했다. GRB150101B와 GW170817 사이에는 여러 공통점이 있지만, 매우 중요한 두 가지 차이점이 있다. 하나는 위치인데 GW170817은 지구에서 약 1억3000만 광년 거리에 있지만, GRB150101B는 약 17억 광년이나 떨어져 있다. 두 번째 중요한 차이점은 GW170817와 달리 GRB150101B에서는 중력파 자료가 존재하지 않는다는 것이다. 이런 정보가 없으면 연구팀은 병합된 두 천체의 질량을 계산할 수 없다. 따라서 GRB150101B는 두 중성자별이 아니라 블랙홀과 중성자별의 병합에서 비롯됐을 수 있다. 또다른 연구 참여자인 NASA의 알렉산더 쿠이트레프 연구원은 “물론 GW170817과 같은 또다른 사건이 중력파 자료와 전자파 영상을 모두 제공하는 것은 시간문제일 것”이라고 말했다. 이어 “다음에 이런 관측을 한다면 그것은 중성자별과 블랙홀의 병합일 것”이라면서 “이번 연구는 이런 사건을 훨씬 일찍 볼 수 있다는 새로운 희망을 준다”고 말했다. 자세한 연구 결과는 세계적 학술지 네이처 자매지인 ‘네이처 커뮤니케이션스’(Nature Communications) 최신호(16일자)에 실렸다. 윤태희 기자 th20022@seoul.co.kr
  • 5000년 전 남미문명, 벤투리 효과 알고 있었다

    5000년 전 남미문명, 벤투리 효과 알고 있었다

    5000년 전 남미에 꽃피운 문명은 이미 벤투리 효과를 알고 있었다는 새로운 연구 결과가 나왔다. 페루의 고고학자 루스 샤디는 15일(현지시간) 카랄 유적 발굴 24주년을 맞아 열린 학술대회에서 이같이 밝혔다. 카랄은 아메리카 대륙에서 가장 오래된 문명으로 유적은 페루 수도 리마로부터 약 180km 떨어진 해안계곡에 남아 있다. 페루 고고학팀은 카랄 유적을 계속 연구하면서 건물 내에 불을 피워 보관하던 장소를 5곳 추가로 찾아냈다. 이미 발견된 2곳을 합치면 불 보관소는 모두 7곳이 된다. 흥미로운 사실은 불을 피워 보관하던 곳에 공기관이 설치돼 있었다는 점이다. 샤디는 "밀폐된 공간에 어떻게 불을 보관했는지 의문이었지만 지하에 공기통로를 놓았던 흔적을 찾아냄에 따라 비밀이 풀렸다"고 말했다. 그러면서 그는 "7개 건물에 불을 보관하는 곳을 만들고 운영한 걸 보면 카랄문명은 벤트리 효과를 충분히 알고 응용하는 능력을 갖고 있었다는 사실을 알 수 있다"고 설명했다. 1797년에야 이론으로 정립된 벤투리 효과를 5000년 전 문명이 알고 있었다는 건 놀라운 일이라고 덧붙였다. 벤투리 효과란 이탈리아의 물리학자 벤투리가 정립한 이론으로 트인 공간을 지나는 바람이 좁은 공간을 만나면 속력이 빨라지는 현상을 정리한 것이다. 도심에서 빌딩 사이로 센 바람이 부는 게 바로 벤투리 효과다. 샤디는 "카랄문명이 땅밑으로 설치한 공기통로를 통해 공기의 흐름을 빠르게 하고, 이를 이용해 건물마다 불을 보관했다"면서 "매우 진보한 과학지식을 갖고 있었던 게 확인됐다"고 말했다. 카랄이 아메리카에서 번영한 다른 문명의 뿌리가 된다는 주장은 이런 연구결과를 배경으로 한다. 페루 관광부는 "카랄이 아메리카는 물론 인류의 첫 문명일 수 있다"면서 "앞으로 카랄문명을 적극적으로 소개하고 연구를 지원할 것"이라고 밝혔다. 한편 불을 보관하던 시설은 피라미드 형태의 7개 건물에서 각각 1개씩 발견됐다. 주로 신에 대한 의식 등 종교적 목적으로 사용됐을 것으로 추정된다. 사진=디푸시온 남미통신원 임석훈 juanlimmx@naver.com
  • 블랙홀 비밀에 도전…호킹의 마지막 연구논문 온라인 공개

    블랙홀 비밀에 도전…호킹의 마지막 연구논문 온라인 공개

    영국의 세계적인 물리학자 스티븐 호킹 박사가 향년 76세의 나이로 타계한 지 벌써 7개월이 흘렀다. 하지만 그의 놀라운 지성은 여전히 과학계에 지대한 공헌을 하고 있다. 영국 가디언 등 외신은 10일(이하 현지시간) 호킹 박사의 마지막 연구논문이 이제 누구나 읽을 수 있도록 온라인상에 게재됐다고 보도했다. ‘블랙홀의 엔트로피와 부드러운 털’(Black Hole Entropy and Soft Hair)이라는 제목이 붙여진 이 논문은 지난 9일 미국 코넬대가 운영하는 온라인 논문저장 사이트 ‘아카이브’(ArXiv.org)에 공개돼 현재 누구나 무료로 내려받을 수 있다. 이 논문은 호킹 박사 외에도 공동 연구자인 사샤 하코, 맬콤 페리, 앤드루 스트로민저가 함께 집필했다. 그리고 논문에는 호킹 박사를 기리기 위한 헌사가 담겼다. 거기에는 “우리는 가장 사랑하는 친구이자 공동 연구자였던 스티븐 호킹을 잃어 깊은 슬픔에 빠져 있다. 블랙홀 물리학에 대한 그의 공헌은 마지막까지도 큰 자극이 되고 있다”고 쓰였다. 보도에 따르면, 이 논문은 호킹 박사의 경력에 있어 일종의 ‘북엔드’ 역할을 하며 그가 지난 40년간 추구했던 블랙홀의 양자 구조에 관한 그의 마지막 연구 중 일부를 담고 있다. 여기서 북엔드는 세워 놓은 책들이 넘어지지 않도록 받쳐 주는 물건을 뜻한다. 그의 마지막 논문은 물리학 최대 미해결 문제 중 하나에 대한 도전이다. 그 문제는 호킹 박사 자신이 제시한 것이기도 하다. 이는 블랙홀로 빨려 들어간 물질이 정말 소멸하는지에 관한 것이다. 물리 법칙이 그것을 불가능하게 해도 말이다. 이 역설은 양자역학의 법칙을 일반 상대성 이론과 비교하므로 문제가 된다. 이 논문에서 호킹 박사와 그의 동료들은 ‘부드러운 털’이 그 모순을 해결할 수 있다고 제안했다. 부드러운 털은 블랙홀로부터 탈출할 수 없게 되는 경계인 ‘사건의 지평선’(event horizon)에 있는 광자(photon)를 뜻한다. 이 경우 블랙홀의 가장자리에 있는 이 털이 실제로 블랙홀에 빠진 물질의 정보를 저장한다. 이는 물질에 첨부돼 있던 정보가 우주에서 소멸한 것이 아니라 명백히 지평선 너머로 사라진 것처럼 보일 뿐이라는 것을 뜻한다. 이에 대해 공동저자인 맬컴 페리 케임브리지대 이론물리학 교수는 가디언과의 인터뷰에서 “이는 한걸음 앞으로 나아가는 과정이긴 하지만 확실히 완전한 해답은 아니다”면서 “우리는 예전보다 퍼즐의 수를 좀 더 줄였지만, 여전히 난제 몇 개가 남아 있다”고 설명했다. 사진=스티븐 호킹(로이터 연합뉴스) 윤태희 기자 th20022@seoul.co.kr
  • [이광식의 천문학+] 우리은하 형태, 대체 어떻게 알아냈을까? - 400년의 기록

    [이광식의 천문학+] 우리은하 형태, 대체 어떻게 알아냈을까? - 400년의 기록

    숲속에선 숲의 형태를 알 수 없다 오늘날 우리는 우리가 살고 있는 은하의 형태가 나선팔을 가진 원반 꼴임을 잘 알고 있다. 최근에 중앙에 막대 구조가 있는 것까지 밝혀져 우리은하는 분류상 막대나선은하에 속한다. 그러나 이렇게 우리은하의 형태와 크기를 알게 되기까지에는 수많은 천문학자들의 400년에 걸친 노고가 숨어 있다는 사실을 아는 이는 그리 많지 않다. 숲속에서 그 숲의 전체 형태를 잘 알 수 없는 것과 마찬가지로, 은하 내부에 살면서 그 은하의 모양을 알아내기란 참으로 어려운 일이기 때문이다. 인류 중 그 누구도 우리은하 바깥으로 나간 이는 아직 없다. 우리은하의 단면적인 모습을 알려면 은하수를 보면 된다. 밤하늘에 동서로 길게 누워 가는 이 빛의 강, 은하수를 일컬어 서양에서 밀키웨이(milky way)라 하는 것은 헤라 여신의 젖이 뿜어져나와 만들어졌다고 하는 그리스 신화에 기원한다. 이처럼 일찍부터 인류와 친숙한 은하수지만, 이 은하수의 정체를 알아낸 것은 놀랍게도 400년 밖에 안된다. 은하로의 먼 여정을 향해 첫 주자로 나선 사람은 17세기 이탈리아 물리학자 갈릴레오 갈릴레이였다. 1610년 갈릴레오는 자신이 직접 만든 망원경을 은하수에 들이대어 관측한 결과, 흐릿하게 성운처럼 보이는 은하수가 실제로는 개개의 별들로 분해된다는 것을 알아냈다. 이리하여 갈릴레오는 은하수가 무수한 별들의 집적이라는 사실을 최초로 발견하고 그것을 인류에 보고하는 영예를 얻었다. ​ ‘은하수’를 밝혀낸 철학자 그 다음 은하수에 관해 놀라운 추론을 한 사람이 1세기 후에 나타났다. 그런데 그는 놀랍게도 과학자가 아닌 철학자인 임마누엘 칸트였다. 1755년에 발표된 칸트의 박사학위 논문은 철학이 아니라 천문학 이론으로, 그 제목부터가 ‘일반 자연사와 천체 이론’이었다. 하긴 그 시대는 철학과 천문학 사이에 명확한 선이 없던 때이기는 했지만 칸트의 논문은 명확히 천문학에 관한 내용이었다. 그것도 우리 태양계의 생성에 관한 학설로, 흔히 성운설‘이라고 불리는 것이다. 현대 천문학 교과서에도 ‘칸트의 성운설’(Kant’s Nebula Hypothesis)로 당당하게 자리잡고 있다. 태양계 성운설을 제창한 칸트는 태양계가 만들어진 것과 같은 원리로 우리은하가 만들어졌다고 생각했다. 즉 회전하는 거대한 성운이 수축하면서 원반 모양이 되고 원반에서 별이 탄생했으며, 은하수는 원반 위에 있는 관측자가 본 우리은하의 옆모습이라는 정확한 설명을 내놓았다. “지구가 은하 원반 면에 딱 붙어 있어 지구에서 은하수를 보는 시선방향이 우리은하를 횡단하게 된다. 따라서 지구에서 볼 때 중심부와 먼 가장자리 별들이 겹쳐져 보이므로 그처럼 밝은 띠로 보이게 되는 것이다. 또한 원반이 얇으므로 아래 위쪽은 당연히 성기게 보인다.” ​200년도 더 전에 나온 철학자 칸트의 이 같은 은하수 설명은 참으로 놀라운 예지와 직관의 산물이라 하지 않을 수 없다. 직접 망원경으로 천체를 관측하기도 한 칸트는 당대 최고의 우주론자로서, 우리 은하 바깥에도 우리 은하처럼 수많은 별로 이뤄진 독립된 은하들이 섬처럼 흩어져 있으며 우리 은하는 이처럼 수많은 은하의 하나에 불과하다는 섬우주론을 주장했다. 허셜이 시도한 ‘하늘의 구축’ 칸트 다음으로 은하수 여정에 오른 사람은 칸트와 동시대인으로 천왕성 발견자인 윌리엄 허셜이었다. 은하수의 실제 모습과 태양이 은하수 내에 어디쯤 위치하는지 알아내려는 시도는 이 허셜에 의해 처음으로 이루어졌다. 1784년, 그는 전인미답의 영역, 은하계 구조 연구에 착수했다. 이전의 어떤 천문학자도 시도해보지 않은 주제였다. 허셜은 이 계획을 ‘하늘의 구축’이라 이름했다. 그는 하늘을 여러 영역으로 나누고 각 영역에 있는 별의 수를 헤아려 우리은하의 별 분포를 조사했다. 통계적으로 밝은 별은 가까운 별, 어두운 별은 먼 별임을 전제하고, 3400개의 성단들에 있는 별들의 수를 센 결과, 별의 분포는 타원체를 이루며 은하수에 있는 별들이 모두 3억 개라는 수치가 나왔다. 허셜은 별들이 은하수에 가까울수록 많이 밀집해 있다는 것을 발견하고, 태양계는 은하계의 일부분으로, 태양은 은하의 중심부분에 위치한다는 결론을 내렸으며, 은하계는 수레바퀴 모양의 별의 집단을 옆에서 본 것에 불과하다고 주장했다. 이 수레바퀴의 긴 지름이 짧은 지름의 4배라고 발표했다. 이로써 인류 역사상 최초로 은하수의 정체와 구조가 밝혀진 셈이다. 그에 의하면, 우리가 사는 은하계는 우주 안에서 별들이 모여 있는 유일한 집단이 아니며, 거대한 체계를 이루는 집단들 중 하나일 뿐이라는 것이다. 허셜은 나아가 우주의 규모를 언급했다. 당시 가장 가까운 별들 간의 거리도 제대로 모를 시기에 그는 가장 멀리 떨어져 있는 대상들의 거리를 200만 광년으로 잡았다. 물론 오늘날 보면 턱없이 작게 잡은 것이지만, 당시로서는 현기증 날 만큼 어마어마한 거리였다. 사람들은 우주의 광막한 크기에 입을 딱 벌렸다. 요컨대, 허셜은 역사상 최초로 인류 앞에 광대한 우주의 규모를 펼쳐보여 주었던 것이다. 1920년에는 네덜란드의 야코뷔스 캅테인이 허셜의 방법에 따라 더 정교하게 별들의 분포를 관찰한 후, 1922년에 출간된 그의 필생 사업인 <항성계의 배열과 운동이론에 관한 최초의 시도>에서 우리은하를 중심에서 멀어질수록 별의 밀도가 감소하는 렌즈 모양의 섬우주로 묘사했다. 캅테인의 섬우주 모형에서 우리은하의 크기는 약 4만 광년, 두께가 6500광년이며, 태양의 위치는 우리은하 중심에서 2000광년 떨어진 지점이었다. 태양계의 위치는 여전히 크게 벗어난 것이지만, 우리은하의 실제 규모에 상당히 근접하는 값을 내놓았다는 데 큰 의미가 있었다. ‘이것이 내 우주를 파괴한 편지다’ 이 허셜-캅테인 모형의 반대편에는 미국의 할로 섀플리의 우리은하 모형이 있는데, 섀플리는 1919년 늙은 별들의 집단인 구상성단들을 관측한 끝에, 그것들이 거의 구형으로 분포하며 지름이 30만 광년이고, 그 중심으로부터 태양은 약 4만5000광년 떨어져 있다고 추정했다. 그는 구상성단들의 분포 중심이 우리은하의 중심이라고 보았다. 섀플리의 우리은하 모형은 허셜-캅테인 모형과는 달리 태양이 우리은하의 중심에 있지 않은 셈이다. 이는 코페르니쿠스의 태양중심설에 못지않은 우주관의 변혁을 가져왔다. 그러나 섀플리는 ‘안드로메다 성운’을 포함한 모든 천체가 우리 은하 안에 있으며 우리 은하 자체가 우주라고 생각하는 오류를 저질렀다. 이러한 섀플리의 주장은 얼마 후 에드윈 허블이라는 신참 천문학자에 의해 무참히 퇴출되었다. 1924년 허블은 안드로메다 성운에서 변광성을 관측해 안드로메다 은하까지의 거리를 알아냄으로써 그것이 우리은하 밖의 외부 은하임을 밝혔다. 허블이 섀플리에게 자신이 발견한 결과를 편지로 알리자, 섀플리는 “이것이 내 우주를 파괴한 편지다”라고 말했다고 한다. 그러나 우리은하의 구조에 대해서는 섬우주론에서 채택한 허셜-캅테인 모형이 틀리고, 태양이 은하의 중심에서 멀리 떨어져 있는 섀플리 모형이 더 타당한 것으로 결론이 났다. 전파로 은하중심을 헤집다 1940년대 들어 전파천문학이 발전함에 따라 천문학자들은 전파의 각 파장대의 특성을 이용한 관측으로 우리은하에 네 개의 주요 나선팔이 있으며, 이들이 어떤 분포를 하고 있는지를 알아냈다. 그 결과, 우리은하는 전형적인 나선은하라는 결론을 내렸다. 하지만 우리은하에 막대가 있을 거라는 주장은 1990년대에 들어와서야 일부 천문학자들 사이에서 나왔다. 그러나 확실한 관측에 바탕을 둔 주장이 아니었기 때문에 천문학계에서는 이를 받아들이지 않았다. 막대구조를 확인하기 위해서는 무엇보다 은하의 중심을 들여다보아야 하는 난제가 가로놓여 있었다. 은하 중심이 눈부시게 밝을 뿐만 아니라, 은하 원반의 성간 먼지나 가스, 별 등이 우리의 시선을 가로막고 있기 때문이다. 그러나 가장 산란이 적은 적외선 망원경이 이 문제를 해결해 주었다. 2005년 스피처 적외선 우주망원경이 마침내 은하 중심을 육박했다. 이 스피츠의 관측에 의해 우리은하 중심부에 2만7000광년 길이의 막대구조가 들어앉아 있음을 공식 확인했다. 그리고 우리은하의 팔도 막대구조 끝에서 뻗어나온 2개의 나선팔과, 여기서 가지치기한 2개의 작은 나선팔이 더 있는 전형적인 막대나선은하 형태임이 밝혀졌다. 이로써 우리은하 형태를 결정짓는 화룡점정이 이루어졌고, 덕분에 2005년 이후 우리은하의 형태는 막대나선은하로 확고히 자리매김되었다. 우리은하의 ‘맨얼굴’ 우리은하를 옆에서 보면 프라이팬 위에 놓인 계란 프라이와 흡사한 꼴이다. 가운데 노른자 부분을 팽대부라 한다. 거기에 늙고 오래 된 별들이 공 모양으로 밀집한 중심핵(Bulge)이 있고, 그 주위를 젊고 푸른 별, 가스, 먼지 등으로 이루어진 나선팔이 원반 형태로 회전하고 있다. 그리고 그 외곽에는 주로 가스, 먼지, 구상성단 등의 별과 암흑물질로 이루어진 헤일로(Halo)가 지름 40만 광년의 타원형 모양으로 은하 주위를 감싸고 있다. 천구상에서 은하면은 북쪽으로 카시오페이아자리까지, 남쪽으로 남십자자리까지에 이른다. 은하수가 천구를 거의 똑같이 나누고 있다는 사실은 곧 태양계가 은하면에서 그리 멀리 떨어져 있지 않다는 것을 뜻한다. 은하수는 중심부가 있는 궁수자리 방향이 가장 밝게 보인다. 이 중심부에 태양질량의 약 400만 배인 지름 24km짜리 크기의 블랙홀이 있다는 것이 밝혀졌다. 뿐더러, 이 블랙홀 근처에 작은 블랙홀이 하나 더 있어 쌍성처럼 서로 공전하고 있다는 것이 확인되었다. 어째서 이런 일이? 이것은 바로 과거에 우리은하가 다른 작은 은하를 잡아먹었다는 증거다. 우리은하가 약 10억 년 전 젊은 다른 은하와 충돌, 합병하여 현재의 크기가 되었다고 한다. 우리은하의 지름은 10만 광년, 가장자리는 5000광년, 중심 부분은 2만 광년이다. 은하가 이처럼 납작한 이유는 은하 자체의 회전운동 때문이다. 이 안에 약 4000억 개의 별들이 중력의 힘으로 묶여 있다. 태양 역시 그 4000억 개 별 중의 하나일 따름이다. 태양은 우리은하의 중심으로부터 2만8000광년 거리에 있으며, 나선팔 중의 하나인 오리온 팔의 안쪽 가장자리에 있다. 우리 태양계는 물론, 우리은하 전체가 중심핵을 둘러싸고 회전하고 있다. 태양이 은하중심을 도는 속도는 초속 220km나 되지만, 그래도 한 바퀴 도는 데 2억5000만 년이나 걸린다. 태양이 태어난 지 대략 50억 년이 됐으니까, 지금까지 미리내 은하를 20바퀴쯤 돈 셈이다. 앞으로 그만큼 더 돌면 태양도 종말을 맞을 것이다. 물론 인류는 훨씬 이전에 지구상에서 사라졌을 것이다. 이광식 칼럼니스트 joand999@naver.com  
  • ‘힉스 입자’ 발표 美물리학자 레더먼 별세

    ‘힉스 입자’ 발표 美물리학자 레더먼 별세

    우주 생성의 비밀을 밝혀 줄 ‘힉스 입자’에 ‘신의 입자’라는 별명을 붙인 미국의 노벨 물리학상 수상자 리언 레더먼이 3일(현지시간) 세상을 떠났다. 96세.뉴욕타임스는 페르미 미 국립 가속기 연구소장이었던 실험물리학자 레더먼이 이날 오전 아이다호주 렉스버그의 요양원에서 노환으로 타계했다고 전했다. 니글 로키어 페르미 연구소장은 “레더먼이 입자 물리학계에 기여한 공로는 앞으로 수십년간 우리에게 영향을 미칠 것이나 우리 생애에 레더먼 같은 과학자를 또다시 보기는 힘들 것”이라고 애도했다. 미국 뉴욕 출신인 레더먼은 1962년 뮤온 중성미자를 발견한 업적으로 1988년 노벨 물리학상을 공동 수상했다. 그는 1979년부터 1989년까지 페르미 연구소장으로 재직하던 중에 역사상 최대 출력을 내는 가속기를 완성했다. 이후 1993년 출간된 힉스 입자 연구에 대한 저서 ‘신의 입자’로 과학계에서 큰 반향을 불러일으켰다. 하종훈 기자 artg@seoul.co.kr
  • ‘레이저 물리학 대변혁’ 美·佛·加 3명 노벨물리학상…55년 만에 여성도 수상

    ‘레이저 물리학 대변혁’ 美·佛·加 3명 노벨물리학상…55년 만에 여성도 수상

    광학 집게·시력교정 활용 레이저 파동 의학·산업용 고도정밀기기 개발 기여 2018년 노벨 물리학상은 ‘빛의 도구’인 레이저 물리학의 혁신적 발전을 견인한 미국과 프랑스, 캐나다 과학자에게 돌아갔다. 스웨덴 왕립과학원 노벨위원회는 2일(현지시간) 올해 노벨 물리학상 수상자로 아서 애슈킨(왼쪽·96) 미국 벨연구소 박사, 제라르 무루(가운데·74) 프랑스 에콜폴리테크니크 교수, 도나 스트리클런드(오른쪽·59) 캐나다 워털루대 교수가 선정됐다고 밝혔다. 노벨위원회는 “이들은 초미세 물질은 물론 빠르게 움직이는 생체 과정을 관찰할 수 있는 초정밀 레이저 장치를 개발해 의학 분야와 산업 분야 발전에 기여했다”고 평가했다. 무루 교수와 스트리클런드 교수는 사제 관계로 알려져 있다. 특히 스트리클런드 교수는 55년 만에 탄생한 물리학 분야의 여성 수상자로 역대 세 번째다. 앞서 노벨 물리학상을 수상한 여성은 1903년 프랑스 마리 퀴리 박사와 1963년 미국 마리아 괴퍼트메이어 캘리포니아 샌디에이고대 교수 2명밖에 없었다. 애슈킨 박사는 질량이 1g보다 적은 미세입자에 레이저 광선을 쪼이면 입자를 움직이지 못하도록 포획할 수 있으며 이를 미세하게 조작할 수 있는 ‘광학 집게’ 원리를 발견했다. 미국 에너지부 장관 출신인 물리학자 스티븐 추 박사는 애슈킨 박사가 발견한 광학 집게 원리를 바탕으로 미세입자를 극저온까지 냉각시키는 장치를 개발한 업적으로 1997년 노벨 물리학상을 받은 바 있다. 현재 이 기술은 DNA 염기서열 분석이나 박테리아, 바이러스를 연구할 때 활용된다. 무루 교수와 스트리클런드 교수는 고강도, 초단파 펄스를 발생시키는 레이저를 연구해 물질의 기본 특성을 분자 수준까지 파악할 수 있는 ‘펨토초 레이저’ 개발에 바탕이 되는 기술을 개발했다. 이와 함께 이들은 펨토초 레이저를 고출력으로 높일 때 발생할 수 있는 출력과 정밀도 저하를 막을 수 있는 ‘처프 펄스 증폭’ 기술도 만들어 냈다. 최근 펨토초 레이저는 라식 수술과 같은 시력 교정에도 활용되고 있다. 이번 노벨 물리학상 수상자 3명에게는 상금 900만 스웨덴크로나(약 11억 2491만원)가 주어진다. 공헌도에 따라 애슈킨 박사가 절반인 450만 스웨덴크로나를 받고, 무루 교수와 스트리클런드 교수가 나머지를 절반씩 나눠 갖게 된다. 노벨위원회는 3일 화학상, 5일 평화상, 8일 경제학상 수상자를 발표한다. 시상식은 노벨상을 만든 알프레드 노벨의 기일인 오는 12월 10일 스웨덴 스톡홀름과 노르웨이 오슬로에서 열린다. 유용하 기자 edmondy@seoul.co.kr
  • 2018년 노벨물리학상은 ‘레이저물리학’ 대변혁 가져온 老학자 품으로

    2018년 노벨물리학상은 ‘레이저물리학’ 대변혁 가져온 老학자 품으로

    2018년 노벨 물리학상은 ‘빛의 도구’인 레이저 물리학의 혁신적 발전을 견인한 미국과 프랑스, 캐나다 과학자에게 돌아갔다. 스웨덴 왕립과학원 노벨위원회는 2일(현지시간) 올해 노벨 물리학상 수상자로 아더 애쉬킨(96) 미국 벨연구소 박사, 제라드 모로(74) 프랑스 에콜폴리테크닉 교수, 도나 스트릭랜드(59) 캐나다 워털루대 교수가 선정됐다고 밝혔다. 노벨위원회는 “이들 3명의 과학자들은 초미세 물질은 물론 빠르게 움직이는 생체과정을 관찰할 수 있도록 한 초정밀 레이저 장치를 개발함으로써 의학분야와 산업분야에 다양하게 활용할 수 있는 기틀을 마련했다”고 평가했다. 이번에 수상한 제라드 모로 교수와 도나 스트릭랜드 교수는 사제관계로 알려져 있다. 특히 도나 스트릭랜드 교수는 물리학 분야의 세 번째 여성 수상자로 55년만이다. 역대 노벨물리학상 수상자 중 여성은 1903년 프랑스 마리 퀴리 박사와 1963년 미국 마리아 괴퍼트-메이어 캘리포니아 샌디에고대 교수 2명 밖에 없었다. 애쉬킨 박사는 질량이 1g보다 적은 미세입자에 레이저 광선을 조사하면 입자를 움직이지 못하도록 포획할 수 있으며 이를 미세하게 조작할 수 있는 ‘광학 집게’ 원리를 발견했다. 미국 에너지부 장관 출신인 물리학자 스티븐 추 박사는 애쉬킨 박사가 발견한 광학 집게 원리를 바탕으로 극저온까지 냉각시키는 장치를 개발하는 등 실제 활용 가능한 공정을 만든 업적으로 1997년 노벨물리학상을 받은 바 있다. 현재 이 기술은 DNA 염기서열 분석이나 박테리아, 바이러스를 연구할 때 활용된다. 모로와 스트릭랜드 교수는 고강도, 초단파 펄스를 발생시키는 레이저를 연구해 물질의 기본 특성을 분자 수준까지 파악할 수 있는 ‘펨토초 레이저’ 개발에 바탕이 되는 기술을 개발했다. 이와 함께 이들은 펨토초 레이저를 고출력으로 높일 때 발생할 수 있는 출력과 정밀도 저하를 막을 수 있는 ‘처프 펄스 증폭’(CPA) 기술도 만들어 냈다. 최근 펨토초 레이저는 라식수술과 같은 시력교정에도 활용되고 있다. 이번 노벨 물리학상을 수상한 3명의 과학자들에게는 상금 900만 스웨덴크로나(11억 2491만원)가 주어진다. 상금은 공헌도에 따라 애쉬킨 박사가 절반인 450만 스웨덴크로나를 받고, 모로 교수와 스트릭랜드 교수가 나머지인 450만 스웨덴 크로나를 절반씩 나눠 갖게 된다. 노벨위원회는 3일 화학상, 5일 평화상, 8일 경제학상 수상자를 차례로 발표한다. 시상식은 노벨상을 받은 알프레드 노벨 기일인 12월 10일 스웨덴 스톡홀름과 노르웨이 오슬로에서 열린다. 유용하 기자 edmondy@seoul.co.kr
  • 55년 만에 ‘유리 천장‘ 깬 노벨 물리학상…96세 과학자도 선정

    55년 만에 ‘유리 천장‘ 깬 노벨 물리학상…96세 과학자도 선정

    올해 노벨물리학상의 영예는 미국의 아서 애슈킨, 프랑스의 제라르 무루, 캐나다의 도나 스트리클런드 등 3명이 공동으로 가져갔다. 스웨덴 왕립과학원 노벨위원회는 2일(현지시간) 이들 3명의 연구자를 올해 노벨물리학상 공동 수상자로 선정했다고 밝혔다. 스웨덴 왕립과학원은 이들 연구자의 발명이 “레이저 물리학 분야에 대변혁을 가져왔다”며 “선진 정밀기기들이 탐험되지 않은 연구 분야와 여러 산업, 의학 분야 적용의 새 지평을 열었다”며 선정 이유를 밝혔다. 특히 스트리클런드는 지난 1963년 이후 55년 만에 ‘유리 천장’을 깬 여성 수상자여서 더욱 눈길을 끈다.지금까지 112차례에 걸쳐 노벨물리학상이 수여되는 동안 여성이 영예의 주인공이 된 사례는 지난해까지 단 두 차례에 불과했다. 1903년 마리 퀴리와 1963년의 마리아 메이어 두 명만이 명단에 이름을 올렸다. 노벨물리학상은 반세기 넘게 여성 물리학자들 앞에 가로 막힌 벽인 셈이었다. 그러나 이번에 도나 스트리클런드가 공동 수상의 영예를 안으면서 ‘유리천장’은 55년 만에 깨지게 됐다.스트리클런드는 여성으로서는 세 번째 노벨물리학상 수상자라는 영예도 함께 얻었다. 1901년부터 지난해까지 수상자들의 평균 나이는 55세였다. 다만 올해 공동수상자인 미국의 아서 애슈킨이 96세,프랑스의 제라르 무루가 74세, 캐나다의 도나 스트리클런드가 59세인 만큼,수상자들의 평균 연령은 더 올라가게 됐다.특히 지난해까지 물리학상 수상자 중 최연장자는 2002년 수상자 레이먼드 데이비스 2세로 당시 88세였지만,이번에 애슈킨이 ‘8살’이나 높여 또 다른 기록의 주인공이 됐다. 가장 어린 나이에 노벨물리학상을 받는 이는 1915년 수상자인 로런스 브래그로 당시 25세였다.그해 자신의 아버지와 공동 수상했다.‘퀴리 부인’으로 유명한 프랑스의 마리 퀴리는 1903년 남편 피에르 퀴리와 노벨물리학상을 함께 받았다. 두 사람의 딸인 이렌 졸리오 퀴리와 그 남편 프레데릭 졸리오는 1935년 노벨화학상을 공동 수상하면서 ‘노벨상 가문’으로 명성을 높였다. 아버지와 아들이 노벨물리학상을 수상한 경우도 모두 네 차례다. 다만 같은 해에 공동 수상한 것은 1915년 윌리엄 브래그-로런스 브래그 부자(父子)가 유일하다. 나머지 세 경우는 아버지와 아들이 각각 다른 해에 물리학상을 받았다. 노벨상 상금은 스웨덴 화폐인 크로나(SEK) 기준으로 1인당 900만 크로나(약 11억 2000여만원)에 이른다. 노벨이 남긴 유산 약 3100만 크로나(현재 가치로는 약 17억 200만 크로나)를 기금으로 노벨재단이 운영한 자금에서 나온다. 이기철 선임기자 chuli@seoul.co.kr
  • “입자가속기 실험 잘못되면 지구 100m 구체로 줄어들 수도”

    “입자가속기 실험 잘못되면 지구 100m 구체로 줄어들 수도”

    영국의 저명한 우주학자이자 천체물리학자인 마틴 리스 경이 ‘입자가속기에 관한 최악의 시나리오’를 공개했다. 이는 말 그대로 지구 종말을 의미한다. 영국 일간 텔레그래프 등 외신은 1일(현지시간) 영국 왕립협회 회장을 역임한 마틴 리스 교수가 신간에서 만일 입자가속기 실험이 잘못되면 블랙홀이 생기거나 지구가 지름 100m짜리 구체로 압축될 수 있다고 경고했다고 밝혔다. 리스 교수는 ‘미래에: 인류에 대한 전망’(On The Future: Prospects for Humanity)이라는 제목의 이 책에 “입자가속기는 우주에 관한 우리 이해에 엄청난 돌파구를 마련했지만 큰 위험 역시 가져온다”면서 “어쩌면 블랙홀이 발생해 주변 모든 것을 빨아들일 수 있다”고 썼다. 또 그는 “두 번째 가능한 위험은 쿼크가 기묘체(strangelet)로 불리는 압축 물체로 재구성되는 것이다. 그 자체는 해가 없을 수 있다”고 밝혔다. 여기서 쿼크는 양성자, 중성자와 같은 소립자를 구성하고 있다고 여겨지는 기본적인 입자를 말한다. 하지만 그는 “몇몇 가설에 따르면, 기묘체는 전염에 의해 접촉하는 다른 모든 물질을 새로운 형태로 바뀌어 지구 전체를 지름이 100m 정도 되는 초밀도 구체로 압축될 수 있다”면서 “이는 축구장 2개분을 합친 길이”라고 설명했다. 리즈 교수에 따르면, 입자가속기가 지구를 파괴할 수 있는 세 번째 방법은 “공간 자체를 집어삼키는 재앙”에 따른 것이다. 우선 그는 “물리학자들이 ‘진공’이라고 부르는 빈 공간은 단순한 공허 이상이다. 그곳은 모든 일이 일어나는 경기장”이라면서 “그 안에 물리적 세계를 지배하는 모든 힘과 입자가 잠재돼 있다”고 설명했다. 이어 “현재의 진공 상태는 깨지기 쉽고 불안정할 수 있다. 어떤 이들은 입자가 충돌할 때 발생하는 응축된 에너지가 우주 구조를 찢는 ‘단계 전환’을 유발할 수 있다고 추측한다”면서 “이는 단순히 지구만의 재앙이 아닌 우주 대재앙이 될 것”이라고 적었다. 하지만 그는 입자가속기의 필요성 역시 언급했다. 그는 “예를 들어, 대형강입자충돌기(LHC·Large Hadron Collider)는 과학자들이 힉스입자라는 가상 입자를 발견하도록 했다. 혁신은 종종 위험하지만 위험을 감수하지 않으면 이득을 잃을 수 있다”면서 “그런데도 물리학자들은 우주에서도 전례 없는 상황을 만드는 실험을 수행하는 데 신중해야 한다”고 지적했다. 이어 “많은 사람이 이런 위험을 SF 소설로 무시하는 경향이 있지만 가능성이 매우 적다고 해서 큰 위험을 무시할 수는 없다”고 덧붙였다. 하지만 얼마 전 세상을 떠난 스티븐 호킹 박사를 비롯해 많은 저망한 학자들은 입자가속기를 축복한다. 호킹 박사는 생전에 “LHC를 가동할 때 세상은 끝나지 않을 것이다. LHC는 절대적으로 안전하다”면서 “지구의 대기에서는 더 큰 에너지가 방출되는 충돌이 하루에도 수백만 번씩 일어나고 있지만 어떤 끔찍한 일도 일어나지 않았다”고 말했다. 실제로 LHC는 2009년부터 가동에 들어갔지만 우려는 그야말로 우려로 끝났다. 유럽입자물리연구소(CERN) 역시 홈페이지를 통해 “LHC는 안전평가그룹(LSAG)을 통해 LHC 충돌 실험이 위험하지 않으며 우려할 이유가 없다는 2003년 보고서의 결론을 재확인하고 확대했다”고 밝혔다. 사진=BBC/ATLAS Experiment/CERN 윤태희 기자 th20022@seoul.co.kr
  • [책꽂이]

    [책꽂이]

    근방에 히어로가 너무 많사오니(장강명 외 7인 지음, 황금가지 펴냄) 장강명, 듀나, 구병모 등 인기작가 8인이 선보이는 슈퍼히어로 단편집. 신라 시대부터 가까운 미래까지 시대와 장르를 넘나들며 슈퍼히어로라는 소재를 한국적 정서와 결합해 폭발적인 상상력을 선보인다. 2015년 출간된 ‘이웃집 슈퍼히어로’에 이은 두 번째 슈퍼히어로 단편집이다. 320쪽. 1만 3000원.개성상인의 탄생(허성관 지음, 만권당 펴냄) 2005년 개성상인의 후예 박영진씨 가문에서 세계에서 가장 오래된 복식부기 장부가 발견됐다. 이 장부를 통해 전통 회계의 탁월함과 조선시대에 이미 자본주의적으로 사고하고 실천한 개성상인들의 현대적 경영 기법을 고찰했다. 260쪽. 1만 6000원.되돌아보고 쓰다(안진걸 지음, 북콤마 펴냄) ‘이명박근혜’ 정권에서 가장 많은 민·형사 기소를 당한 것으로 알려진 저자가 20여년 광장에서 살아온 삶을 써내려 갔다. ‘당분간, 어쩌면 영원히 국민들이 직접 나서야 한다’는 게 집회·시위 기획자로 살아온 저자의 판단이다. 288쪽. 1만 4500원.인듀어(알렉스 허친슨 지음, 다산초당 펴냄) 인간의 한계를 깨는 지구력의 힘을 심리학과 과학의 시선으로 탐구한 교양서. 국가대표 육상선수 출신의 물리학자라는 독특한 이력을 가진 저자가 전 세계를 돌아다니며 10년간 수백명의 학자와 운동 선수를 인터뷰했다. 그는 지구력의 한계를 밀어붙이는 원리를 이해하면 운동 선수뿐 아니라 일반인도 생활에서 능력을 최대치로 발휘할 수 있다고 말한다. 504쪽. 1만 9800원.제국의 품격(박지향 지음, 21세기북스 펴냄) 영국사 권위자 박지향 서울대 서양사학과 교수가 정년퇴임을 앞두고 그간의 연구를 집대성했다. 제국주의라는 이념에 매몰돼 진가가 가려져 있던 영제국의 경영 전략을 조명했다. 그는 자유와 그로 인한 경제적 번영, 문명화에 대한 사명감이 영제국을 전무후무한 강대국으로 만들었다고 평가한다. 364쪽. 2만 5000원.초격차(권오현 지음, 쌤앤파커스 펴냄) 삼성반도체를 세계 1위로 도약시킨 ‘샐러리맨의 신화’ 권오현 삼성전자 회장의 리더십을 담은 책. 평범한 연구원으로 입사해 회장의 자리에 오르기까지, 현장에서 고뇌하고 탐구한 결과로서 얻어낸 경영 철칙과 지혜를 담았다. 336쪽. 1만 8000원.
  • [이광식의 천문학+] 우주에 있는 은하는 몇 개나 될까?

    [이광식의 천문학+] 우주에 있는 은하는 몇 개나 될까?

    우주를 이루는 별돌, 은하 우주라는 구조체를 구성하는 기본적인 벽돌은 무엇일까? 얼핏 별이라고 생각하기 쉽지만, 천문학자들은 은하를 우주의 기본 단위라고 간주한다. 왜냐면, 은하들의 모임이 이 대우주의 다양한 구조들을 만들어내고 있기 때문이다. 그러한 은하들이 이 우주에는 얼마나 많은 있는 걸까? 결론부터 말하자면, 은하의 수를 정확하게 안다는 것은 불가능하다. 지금까지 밝혀진 것에 따르면 은하의 수는 수천억 개에 이르는 것으로 알려져 있다. 우리가 사는 미리내 은하도 그 중 하나일 뿐이다. 서양에서는 이것을 밀키 웨이(Milky Way)라 부르며. 대문자 'Galaxy'로 쓴다 소문자 galaxy는 보통명사로 은하를 뜻한다. 그렇다면 최대한 정확한 숫자를 알 방법은 없을까? 지구 행성에 사는 우리 입장에서 볼 때 그게 그리 간단한 문제가 아니다. 첫째, 아무리 큰 구경의 대형 망원경을 갖다대더라도 대기의 일렁임으로 분해능에 한계가 있게 마련이다. 더 근본적인 문제는 138억 년 전에 출발한 우주가 빛보다 빠른 속도로 팽창함으로써 우주 저편의 빛은 아직까지 우리에게 도착하지도 못하고 있다는 점이다. 그러니 우리의 시야는 빛의 장벽으로 막혀 있다는 뜻이다. 이 장벽을 사건 지평선이라 한다. 우주에는 빛보다 빠른 것이 없다. 빛이 아직까지 우리에게 도착하지 않았으니 그 너머에 은하가 얼마나 있는지는 알 방도가 없는 셈이다. 지금까지 가장 먼 심우주를 관측한 기록은 허블우주망원경이 갖고 있다. 1995년 천문학자들은 큰곰자리의 어두운 영역으로 보이는 망원경을 고정시켜 10일 간의 관측 자료를 수집했다. 그 결과 한 프레임에 약 3,000개의 희미한 은하가 있었으며, 밝기는 30등성 정도로 희미했다(참고로 북극성은 약 2등급이다). 이 이미지 합성물은 '허블 딥 필드'(Hubble Deep Field)라고 불렸고, 그 당시에는 우주에서 가장 멀리 떨어져 있는 은하들이었다.​ 그 다음, 2003년 9월부터 2004년 1월 사이 허블망원경은 밤하늘에서 가장 어두운 부분, 곧 화학로자리(fornax)의 매우 좁은 영역에다 렌즈 초점을 맞추었다. 이 영역에는 심우주를 들여다보는 데 걸리적거리는 밝은 천체들이 거의 없어서 심우주의 창이라 할 수 있는 구역으로, 넓이는 36.7평방분각(1분은 1도의 60분의 1)이다. 이는 대략 보름달 면적의 10분의 1보다 작으며, 하늘 전체 면적 중 1천 3백만 분의 1에 불과하다. 이 사진 내에는 약 1만 개에 이르는 은하들이 찍혔다 허블 울트라 딥 필드(HUDF)로 불리는 범위에 130억 년 이상 된 우주의 모습을 관측해 초기의 은하를 알아보기 위한 것이지만, 곁들여 온 우주의 은하 수를 추정해볼 수 있는 실마리를 제공하는 것이기도 하다. 이 영역은 온하늘의 1천 3백만 분의 1의 구역에 이토록 많은 은하가 존재한다면 우주의 은하 개수는 대략적으로 추산할 수 있다. 울트라 딥 필드 속의 은하들 빅뱅 직후 10억년 정도 은하까지를 관측하는 허블 울트라 딥 필드는 우주 초기 은하의 모습을 관측하여 초기에 은하가 어떻게 형성되고 발전했는지를 알 수 있다. 과학자들은 이런 초기 은하들이 지금의 은하들보다 훨씬 불규칙하고 자주 합체를 일으켰으며 보다 활발한 항성 생성이 이루어졌다고 알고 있다. 울트라 딥 필드 사진은 초기 우주에 대해 예상한대로, 현재에 비해 은하가 활발히 생성되거나 은하끼리 합치는 모습이 포착되어 있다. 말하자면 130억 년 전 우주의 모습이라 할 수 있다. ​허블 울트라 딥 필드 관측 이후 마지막 허블 우주 망원경 업그레이드였던 2009년 미션에서 광시야 카메라(Wide Field Camera:WFC) 3을 탑재한 이후 이전의 관측 결과와 합쳐 더 세밀한 허블 익스트림 딥 필드(XDF) 영상을 얻게 되었다. 이를 통해 가장 먼 거리에 있는 은하들의 존재가 밝혀졌는데, 이 은하들은 빅뱅 직후 5억 년이라는 아주 초기의 은하들로, 현재 관측 기술의 경계에 있는 천체라 할 수 있다. 팔을 쭉 뻗치면 엄지 손가락으로 달을 완전히 가릴 수 있다. 그런데, XDF 영역은 핀의 머리로 가릴 수 있는 좁은 영역이다. 망원경 초점을 이 영역에다 고정시켜 오랜 시간 빛을 모아 얻은 XDF 이미지에는 수천 개의 은하들이 담겨 있다. 이 좁은 시야에서도 천문학자들은 약 5,500 개의 은하를 탐지할 수있었다. 이 이미지는 익스트림 울트라 딥 필드라고 불린다. 물론 학자들마다 다양한 견해들이 있지만, 미국 메릴랜드 주 볼티모어에 있는 우주망원경 과학연구소의 천체 물리학자 마리오 리비오의 추산에 따르면, 전체적으로 허블은 우주에서 약 1,000억 개의 은하계를 밝혀내고 있으며, 우주 망원경 기술이 향상됨에 따라 이 숫자는 약 2,000억까지 증가할 것으로 예측하고 있다. 차세대 망원경 제임스 웹이 2021년에 우주로 올라가면 초기 은하에 관한 더 많은 정보와 함께 보다 정확한 은하의 수가 밝혀질 것으로 예상된다. 이광식 칼럼니스트 joand999@naver.com 
  • ​[우주를 보다] 10층 빌딩만한 소행성, 지구에 접근한다

    ​[우주를 보다] 10층 빌딩만한 소행성, 지구에 접근한다

    - 두 개의 소행성이 22만km 거리까지 접근 두 개의 소행성이 내일 지구로 접근한다. 우주 전문 사이트 스페이스닷컴이 9일(현지시간) 미 항공우주국(NASA)이 새로 발견된 두 개의 소행성이 9월 10일(한국시간) 달보다 가까운 거리에서 지구를 스쳐 지날 것이라고 보도했다. ​NASA의 소행성 관측 팀에 따르면, 두 개의 소행성중 작은 것은 자동차 크기만 하고, 그 뒤를 따라오고 있는 큰 소행성 2018 RC는 10층 빌딩만 한 것으로, 지난 9월 3일(현지시간) 하와이에 있는 소행성 충돌 최종경보 시스템(Asteroid Terrestrial-impact Last Alert System:ATLAS)에 의해 발견되었다. 2018 RC가 10일 지구에 가장 가까이 접근할 때 지구와의 거리는 약 22만km에 지나지 않는데, 이는 지구-달의 거리인 38만km보다 훨씬 가까운 거리이다. NASA는 행성 2018 RC의 지름을 40m로 추정했으며, 밝기는 12등급으로, 구경 10cm 소형망원경으로 볼 수 있다. NASA의 소행성 관측 팀에 따르면, 10일 2018 RC 소행성은 지난 9월 7일(현지시간) 발견된 소행성 2018 RW를 뒤따라올 것으로 알려졌는데, 이 소행성은 지름 3m로, 자동차 크기만 한 것이다. 이탈리아의 체카노에 있는 벨라트릭스 천문대의 천체 물리학자인 지안루카 마시가 설립한 온라인 관측소인 가상 망원경 프로젝트(Virtual Telescope Project)는 10일 저녁 6시(EDT/2200 GMT)부터 실시간 웹 캐스트를 시작한다고 발표했다. 해당 프로젝트나 스페이스닷컴(Space.com) 그리고 virtualtelescope.eu/webtv에서 직접 볼 수 있다. 이광식 칼럼니스트 joand999@naver.com
  • ‘실리콘밸리 노벨상’ 받은 버넬 박사…우주역사 바꾼 ‘펄서’는 무엇?

    ‘실리콘밸리 노벨상’ 받은 버넬 박사…우주역사 바꾼 ‘펄서’는 무엇?

    20세기 가장 중요한 천체 물리학 발견 중 하나인 라디오 펄서를 발견했지만 노벨상에서는 제외된 영국의 천체물리학자 조슬린 벨 버넬(75)이 기초과학 분야 최고 영예의 상인 ‘브레이크스루 상’의 특별 수상자로 선정됐다고 6일(현지시간) 우주전문 사이트 스페이스닷컴이 보도했다. 브레이크스루 상은 구글의 세르게이 브린, 페이스북의 마크 저커버그 등 IT·과학 분야 거두들이 후원해 ‘실리콘밸리의 노벨상’이라는 별명으로도 불리는 상으로, 기초학문 분야 상 가운데 상금이 가장 많다. 물리, 생명과학, 수학 분야에서 매년 1~4명씩 선정하며, 물리 분야에서 이 상을 받은 학자는 올해 타계한 스티븐 호킹, 중력파를 발견해 지난해 노벨물리학상을 받은 라이고 국제협력단 등이 있다. 버넬이 받을 수상 금액은 300만 달러(한화 34억원)로 알려졌다. 올해 시상식은 11월 4일 미국에서 열릴 계획이다. 버넬은 대학원생일 때인 1967년 펄서를 최초로 발견했는데, 이 펄서의 발견으로 인해 인류는 언젠가 태양계 바깥으로 진출하는 데 필수적인 ‘은하계 위치설정 체계’를 구축할 수 있게 되었다. 버넬은 그러나 펄서를 발견하고도 1974년 펄서 발견 업적에 수여된 노벨물리학상 수상자에서는 제외되었다. 그 대신에 노벨상은 그녀의 지도교수인 케임브리지 대학의 앤터니 휴이시와 동료 마틴 라일에게 돌아갔다. 휴이시는 그녀와 함께 필요한 전파망원경을 만들었지만, 펄서를 발견한 사람은 어디까지나 벨이었다. 1974년의 노벨 물리학상 수상은 노벨상이 가장 불공정하게 수여된 사례로 비판을 받는 등, 두고두고 많은 논란을 불러일으켰다. 그러나 버넬은 실망하지 않고 과학자로서의 경력을 성공적으로 쌓아간 끝에 영국 여성 과학자로서는 처음으로 에든버러 왕립학회장을 맡고 영국물리학회장을 역임했으며, 마이클 패러데이상 등 굵직한 상을 여럿 받은 끝에 펄서 발표 50주년을 맞는 올해 브레이크스루 상을 받은 것이다. 버넬이 발견한 펄서는 맥동전파원(脈動電波源)으로 불리는 빠르게 회전하는 작은 별이다. 놀랍게도 성분이 모두 중성자로 이루어진 천체로, 보통의 항성이 폭발로 생을 마감한 후 뒤에 남겨지는 속고갱이 같은 별이다. 중성자별의 밀도는 성냥갑 하나 부피의 물질이 무려 5조 톤에 달한다. 그러나 지름은 겨우 30km 정도로, 초당 수백 회에 이르는 회전을 하면서 라디오파나 X-선 빔을 우주공간으로 쏘아댄다. 이 빔이 지구 쪽으로 향하면 우리는 비로소 펄서 존재를 확인할 수 있게 된다. 펄서는 아인슈타인의 일반 상대성 이론을 테스트 할 수있는 가장 훌륭한 도구 중 하나이기도 하다. 상대성 이론은 천문학자들이 할 수있는 가장 정교한 검증을 모두 통과하여 100년 이상 건재를 과시하고 있다. 그러나 우주가 어떻게 작동하는지에 대한 우리의 가장 성공적인 이론인 양자역학과는 아귀가 잘 맞지 않는다. 과학자들은 그래서 상대성 이론의 작은 결점이라도 찾아내기 위해 분투하고 있는 중이다. 펄서는 이 문제를 풀 수 있도록 도움을 줄 수 있다고 과학자들은 믿고 있다. 지금도 천문학자들에게 날밤을 새게 하는 것은 블랙홀 주변의 궤도에서 펄서를 찾아내고자 하는 열망이다. 이것은 일반 상대성 이론을 검증할 수 있는 가장 이상적인 시스템이기 때문이다. 어쨌든 펄서의 발견은 우주에 대한 인류의 이해를 크게 바꾸었으며, 그 진정한 중요성은 여전히 미지인 채로 펼쳐져 있다고 할 수 있다. “조슬린 벨 버넬의 펄서 발견은 천문학 역사상 가장 위대한 업적 중 하나가 될 것”이라고 규정한 브레이크스루 상 선정위원회 의장 에드워드 위튼은 “발견할 그 순간까지 중성자 별이 실제로 어떻게 존재하는지를 아무도 정확히 알 수 없었지만, 펄서의 발견으로 믿을 수 없을 만큼 정확한 방법으로 이러한 물체를 관찰할 수 있게 되었고 그후 엄청난 진보가 이루어졌다”고 밝혔다. 이광식 칼럼니스트 joand999@naver.com 
  • [논설위원의 사람 이슈 다보기] 北으로 간 김기림 기념비 日에 건립… 평화 추구한 시인 재평가 되길

    [논설위원의 사람 이슈 다보기] 北으로 간 김기림 기념비 日에 건립… 평화 추구한 시인 재평가 되길

    시인 김기림(金起林)의 기념비가 일본 센다이에 있는 도호쿠대학 구내에 11월 30일 건립된다. 김기림 시비는 그가 다닌 서울 보성고(송파구 방이동)에 있으나 일본에 기념비가 건립되기는 처음이다. 일제 시대 교토의 도시샤대학을 다닌 윤동주(1917~1945) 시인의 기념비가 1995년 2월, 정지용(1902~?) 시인의 시비가 2005년 12월 도시샤대학 구내에 건립된 바 있다. 김기림이 1936년부터 1939년까지 다닌 도호쿠제국대학은 일본 제국주의의 관료 양성을 위한 도쿄·교토제국대학과는 달리 연구 중심의 대학을 표방하고 연구의 자유가 비교적 존중된 학교였다. 서울대 일본연구소의 남기정 교수에 따르면 유대인 사상가 카를 뢰비트가 1936년부터 5년간 나치스를 피해 도호쿠대학에 재직했을 정도다. 1922년에는 세계적인 물리학자 알베르트 아인슈타인이 센다이를 방문한 적이 있는데, 과학에 관심이 많았던 김기림이 도호쿠대학을 선택한 이유가 아인슈타인에 있을 것이라고 남 교수는 추정한다.기념비 건립은 몇 년씩 걸리던 윤동주, 정지용 때와는 달리 빠른 속도로 이뤄지고 있다. ‘센다이에서 김기림을 생각하는 한·일 시민 네트워크’라는 이름으로 ‘김기림 기념사업회’가 만들어진 게 지난해 11월. 남 교수를 중심으로 김기림 연구의 권위자인 김유중 서울대 국문과 교수, 이진원 서울시립대 교수, 고선규 중앙선거관리위원회 선거연수원 교수 등이 발기인으로 참가했다. 사업회가 기념비 건립준비위원회로 전환한 것은 지난 6월이다. 기념비 건립에 관심을 보인 외교부가 지원에 나서고, 도호쿠대학에서 협력 의사를 밝히면서 일사천리로 진행됐다. 준비위에 각계 참여도 늘어나고 있다. 다음은 기념비 건립위원회 한국 측 대표인 남기정 교수와의 일문일답 내용. →일본 정치 전공이다. 시인 김기림에 관심을 갖게 된 계기는. -2002년 도호쿠대학 교수로 있으면서 우연히 김기림이 영문학과를 다녔다는 사실을 알고 살짝 흥분한 적이 있다. 그의 글을 찾아 읽으면서 그가 평화를 중심으로 사고한 ‘평화주의자’임을 알게 됐다.→김기림 기념비가 윤동주 기념비, 정지용 시비와 다른 점은. -윤동주는 한국 문학사에서 주류로 자리잡은 뒤 일본에 시집이 번역됐다. 일제의 ‘치안유지법’에 희생된 시인이기 때문에 과거를 반성하는 일본 시민들이 ‘윤동주 읽기’를 전국적으로 전개했고, 평화운동의 상징적 의미로 읽혔다. 그에 비해 김기림은 일본에서는 덜 알려진 존재다. 센다이 지방에서 김기림을 일찍이 알고 공부한 아오야기 유코 같은 한국 현대문학 연구자가 김기림을 읽는 모임을 만들고 자료를 축적해 책도 냈다. 기념비는 김기림을 일본에서 발굴한다는 데 의의가 있다. 즉 윤동주, 정지용 시비는 이미 알려져 있던 한국 문학가를 일본적 맥락에서 재평가하고 기리는 뜻이었다면 김기림 기념비는 그의 일본 행적, 문학적 성과를 드러내는 출발점이다. →도호쿠대학의 협조는 어느 정도인가. -부지 제공을 비롯해 대단히 협조적이다. 우에키 도시야 부총장이 7월 11일 서울에 왔을 때 김기림 얘기를 했더니, 그 자리에서 기념비 건립까지 생각하고 지원하겠다고 했다. 그보다 3개월 전인 지난 4월 센다이총영사관에서 공공외교 차원에서 도호쿠대학을 방문했는데 그때 이미 한·일 교류에 많은 관심을 총장부터 갖고 있었다. 그래서 얘기가 빨랐다. 당시 도호쿠대학 측은 김기림의 학적부도 찾아서 보여줬다. 아쉽게도 졸업 논문은 센다이 폭격 때 불타고 없어진 듯했다. →부지는 결정됐나. -후보지 세 곳을 대학 측에서 제시했는데, 우리가 현장 답사해 보니 벚꽃 두 그루가 있는 개방적인 풀밭이 있었다. 여기가 더 좋겠다고 했더니 얼마 전 도호쿠대학 측이 “좋다”는 허가를 해줬다.→기념비 디자인은 누가 하는가. -시인 이상에 조예가 깊은 김민수 서울대 디자인학부 교수에게 상의를 했더니 관심을 보여줬다. 김 교수는 이상을 알아 봐준 김기림에 관심이 있다는데, 기념비에는 그의 정신이 담겨야 한다고 했다. →앞으로 일정은. -10월에는 기념비를 발주하고 11월 29일 센다이에서 전야제를 가진다. 30일에는 기념비 제막식에 이어 ‘김기림과 평화’라는 주제로 세미나를 열고, 센다이 시민 중심의 ‘문학의 밤’ 행사도 개최한다. 김기림이 한·일 시민사회를 가깝게 하는 상징이 되어 기념비가 세워진 뒤에도 모임을 갖고 연구가 진전이 됐으면 한다. 또한 남북 문인들이 김기림을 생각하는 기회도 마련됐으면 좋겠다. →기념비 건립의 의미라면. -김기림은 시도 시이지만, 많은 평론을 썼다. 해방 공간에서 시가 문학사에서 갖는 역할이 크지만, 김기림은 평론가로서, 경세가로서의 모습도 갖고 있다. 일본에 의해 굴절되지 않은 조선의 모더니즘을 그만큼 고민한 사람도 없었을 것이다. ‘왜 지금이냐’ 는 의미도 중요한데, 한반도의 그 시기를 살았던 지성인, 지식인에 대해 우리 사회는 극단적인 잣대로 평가한다. 이념적 잣대에 들어오지 않는 사람은 무시하거나 과도한 해석을 하는 경향이 있다. 남북이 평화 프로세스를 전개하면서 해야 할 것은 분단 정권 수립 이후 지나치게 양극단으로 가 있었던 부분들을 바로잡는 일이다. 그것이야말로 통일과 화해로 가는 길이다. 그런 점에서 양극단 사이에 난 좁은 길에서 평화를 추구했던 김기림을 평가했으면 한다. 그는 정치적 주의·주장을 떠나 민족의 안팎에서 동시에 진행되는 분열과 분단을 극복하고자 했던 인물이다. marry04@seoul.co.kr
  • 우즈 “6년 만이야”… 미컬슨 “12회 연속이야”

    우즈 “6년 만이야”… 미컬슨 “12회 연속이야”

    우즈, 미컬슨·디섐보와 와일드카드 발탁 2012년 마지막 출전 땐 1무 3패로 부진 미컬슨 최다 출전… 닉 팔도 기록 넘어‘골프 황제’ 타이거 우즈(43·미국)가 6년 만에 라이더컵 골프대회에 선수로 출전한다.라이더컵은 2년마다 열리는 미국과 유럽의 남자골프 대항전으로 올해 대회는 오는 28일부터 사흘 동안 프랑스 파리 남서부의 일드프랑스 르 골프 내셔널에서 열린다. 미국과 유럽 각각 12명씩으로 팀이 구성된다. 미국은 최근 2년간 투어대회 성적을 포인트로 환산한 라이더컵 포인트 상위 8명이 자력으로 출전권을 가진다. 나머지 4명은 단장 추천 몫으로, 5일 미국팀 단장인 짐 퓨릭이 이 가운데 3명의 와일드카드 명단을 발표하며 우즈와 ‘레프티’ 필 미컬슨, ‘필드의 물리학자’ 브라이슨 디섐보를 지명했다. 남은 한 명은 미국프로골프(PGA) 투어 플레이오프 3차전인 BMW 챔피언십이 끝나는 10일 발표될 예정이다. 1997년 대회 때 라이더컵에 데뷔한 우즈는 허리 부상과 수술로 불참한 2008년 대회를 제외하면 2012년까지 7개 대회 연속으로 출전했다. 7개 대회에 참가하면서 낸 통산 전적은 13승3무17패로 썩 좋은 편은 아니었다. 첫날 치르는 포볼(한 조 두 명의 선수가 각각 자신의 공을 쳐 기록한 홀별 스코어 중 더 나은 것을 택하는 매치플레이 방식)에서는 4승1무8패, 둘째 날 포섬(한 조 두 명의 선수가 한 개의 공을 번갈아 쳐 홀별 스코어를 내는 매치플레이 방식)은 5승8패로 두 명이 호흡을 맞추는 경기에 유독 약한 모습이었다. 그러나 마지막날 치러지는 싱글 매치플레이 전적은 4승1무2패로 승패의 역전 현상을 뚜렷이 보였다. 또 한 명의 와일드카드 미컬슨은 최다 출전 기록을 새로 쓴다. 예정대로 출전하게 된다면 미컬슨은 1995년 대회부터 올해까지 12회 연속 미국대표로 뛰게 돼 유럽대표팀의 닉 팔도(잉글랜드·1977년~1997년)와 함께 보유하고 있던 라이더컵 최다 출전 기록 11회를 뛰어넘게 된다. 팔도는 11차례 출전한 라이더컵에서 역대 최다 포인트인 25점을 기록한 선수이기도 하다. 이로써 12명의 올해 라이더컵 미국대표팀 가운데 지금까지 이들 세 명을 비롯해 브룩스 켑카, 더스틴 존슨, 저스틴 토머스, 패트릭 리드, 버바 왓슨, 조던 스피스, 리키 파울러, 웨브 심프슨 등 11명이 확정됐다. 유럽대표팀은 프란체스코 몰리나리(이탈리아), 저스틴 로즈, 티럴 해턴, 토미 플리트우드(이상 잉글랜드), 욘 람(스페인), 로리 매킬로이(북아일랜드), 알렉스 노렌(스웨덴), 토르비에른 올센(덴마크) 등 8명이 확정됐고, 남은 네 자리는 역시 단장 추천으로 채워진다. 단장은 토머스 비욘(덴마크)이다. 최병규 전문기자 cbk91065@seoul.co.kr
  • [아하! 우주] 목성에도 물이 있다? - 대적점은 ‘답’을 알고 있다

    [아하! 우주] 목성에도 물이 있다? - 대적점은 ‘답’을 알고 있다

    목성의 거대 폭풍인 대적점(Great Red Spot)이 목성에 물이 있는지 ‘답’을 갖고 있다는 사실이 최근 새로운 연구에서 밝혀졌다고 우주 전문 사이트 스페이스닷컴이 1일(현지시간) 보도했다. 우리 태양계에서 가장 큰 행성인 목성은 아주 특별한 세계이다. 미 항공우주국(NASA)에 따르면 목성은 태양을 만들고 남은 여분의 물질들을 몽땅 품고 있는 첫 번째 천체일 가능성이 높다. 그래서 과학자들이 목성이 태양과 똑같은 조성을 가지고 있다고 생각하는 것은 놀라운 일이 아니다. 그러나 지난 수십 년 동안 이 행성에 대한 후속 연구에 의해 목성의 사정은 더욱 복잡해졌다. 목성 대적점이 물의 힌트를 가지고 있을지도 모른다는 것은 NASA 고다드 우주비행센터의 천체물리학자 고든 뵤레이커의 최근 연구에서 비롯되었다. “목성을 도는 위성들은 주로 물의 얼음으로 이루져 있기 때문에 모두 물이 풍부하다”고 밝힌 뵤레이커는 “그렇다면 거대한 중력 우물인 모행성에 물이 없을 까닭이 없지 않은가?” 라고 NASA 성명서에서 반문했다. 뵤레이커와 동료 과학자들은 하와이의 마우나 케아산 정상에 있는 케크 천문대의 지구상에서 가장 강력한 적외선 망원경을 사용하여 목성에 대한 복사선 데이터를 수집했다. 또 NASA의 목성 탐사선 주노의 데이터로 보완함으로써 이전의 어떤 미션보다 목성의 구름 속을 더 깊이 탐사할 수 있었다. 현재 주노는 53일에 한 번 목성을 공전한다. 지상 장비를 사용하여 대적점의 깊은 곳에서 나오는 열 복사를 지켜본 결과, 연구팀은 이 폭풍의 심연에 있는 구름 위에서 물의 화학적 특성을 발견했다. 이론적으로나 컴퓨터 분석에 의한 모델 역시 목성에 ‘풍부한’ 물의 존재를 뒷받침한다. 연구팀은 물의 증거를 갖고 있는 대적점 내부의 가장 깊은 구름층은 지구의 대기압의 5배가 되어 온도가 물의 빙점에 도달한다는 사실도 아울러 발견했다. 이는 연구자가 목성에서 발견한 일산화탄소 수준과 더불어 목성이 산소가 풍부하다는 것을 확인하는 것으로 보이며, 이미 풍부한 양의 수소가 있다는 사실이 잘 알려져 있기 때문에 물 성분이 모두 존재하고 있는 것이다. 하지만 목성에 얼마나 많은 물이 있는가 하는 점은 앞으로 규명해야 할 과제로 남아 있다고 연구팀은 밝혔다. 캘리포니아주 패서디나 소재 NASA 제트추진연구소의 주노 프로젝트 과학자인 스티븐 레빈 박사는 “목성의 물은 우리에게 이 거대한 행성의 생성과정에 대해 많은 정보를 알려줄 것”이라면서 “그러나 문제는 목성 전체에 얼마나 많은 물이 있는지를 알아내는 일”이라고 밝혔다. 이번 연구 결과를 상세히 기술한 논문은 8월 17일 ‘아스트로노미컬 저널’(Astronomical Journal)에 발표되었다. 이광식 칼럼니스트 joand999@naver.com  ​
  • [아하! 우주] 태양탐사선 ‘파커’의 시작과 종말 - 금성으로 먼저 가는 이유

    [아하! 우주] 태양탐사선 ‘파커’의 시작과 종말 - 금성으로 먼저 가는 이유

    초속 190km로 태양에 급강하   수십 년에 걸친 과학자들의 치열한 토론과 제작 기간을 거친 끝에 마침내 최초의 태양 밀착 탐사선 파커 솔라 프로브(PSP)가 지난 12일 태양으로의 장도에 올랐다. 총 15억 달러(한화 1조 7000억원)가 투입된 PSP는 앞으로 어떤 행로를 그리며 태양 미션을 수행할까? 우주탐사 역사상 최초로 작열하는 태양 대기 속으로 뛰어들 파커 탐사선의 운명은 과연 어떻게 될까? 발사에서부터 마지막 순간까지 따라가보도록 하자. 가로 1m, 세로 3m, 높이 2.3m, 건조중량 555kg인 파커가 일단 지구 중력을 끊고 우주로 탈출하는 데 사용한 로켓은 강력한 델타 IV 헤비 로켓으로, 세 개의 부스터로 구성된 것이다. 로켓 발사에서부터 약 6분 만에 탐사선은 1단 로켓과 페이로드 페어링(원뿔 모양 보호덮개)을 분리한 데 이어, 2단 로켓과 3단 로켓까지 차례로 분리한 뒤, 발사 40분 뒤에는 PSP가 모든 추진체로부터 분리되어 태양전지판을 펼치고 자체 동력으로 비행하기 시작했다. 그렇다고 탐사선이 곧장 태양을 향해 날아가는 것은 아니다. 태양의 가공할 중력을 버티며 태양 궤도를 선회하려면 탐사선 속도가 엄청나야 한다. ​ 태양이 태양계 전 천체들의 질량에서 차지하는 비중이 무려 99.84%나 되며, 중력의 크기는 지구의 몇십 배에 달한다. 따라서 태양 중력에 붙잡혀 태양 속으로 곤두박질하지 않으려면 탐사선 속도가 초속 190km 이상을 유지해야 한다. 이는 서울-대전 간을 1초에 주파하고, 서울-뉴욕 간 거리 1만 1000km를 1분에 주파하는 속도로, 인류가 만든 비행체로 최고속도를 기록하게 된다. 이 같은 어마무시한 속도는 로켓 힘만으로는 결코 만들어낼 수가 없다. 이럴 때 천체물리학자들이 사용하는 전가의 보도가 있는데, 바로 중력도움이라는 것이다. 중력보조라고도 하는 이 중력도움은 영어로는 스윙바이(swing-by), 또는 플라이바이(fly-by)라고도 하는데, 한마디로 ‘행성궤도 근접 통과’로 행성의 중력을 슬쩍 훔쳐내어 우주선의 가속을 얻는 기법이다. 행성의 입장에서 본다면 우주선의 엉덩이를 걷어차서 가속시키는 셈으로, 이론상으로는 행성 궤도속도의 2배에 이르는 속도까지 얻을 수 있다. PSP가 중력도움을 얻을 대상 천체는 태양으로 가는 길목에 있는 금성이다. 파커는 발사 6주 후인 9월 말경에 금성에 도착하여 9월 28일, 태양과 계산된 중력 춤을 추도록 고안된 기동을 조심스럽게 시작하여 금성을 7차례 ‘플라이바이’한 끝에 태양에 최접근할 때는 시속 69만km까지 가속한다. 물론 파커가 금성을 플라이바이할 때도 그냥 놀게 두지는 않는다. 미 항공우주국(NASA)의 알뜰한 과학자들은 그 기회를 이용해 턱없이 부족한 금성의 과학 데이터를 부지런히 수집하는 '알바'를 시킬 예정이다. 태양풍과 코로나의 비밀을 풀어라 지구를 떠난 지 3달 후인 11월 11일, PSP는 처음으로 태양에 접근해 근일점에서 태양을 중심으로 24궤도 중 첫 번째 궤도 비행을 시작한다. 태양을 밀착 비행하는 각 궤도는 꽃잎 모양을 이루는데, 탐사선은 이 꽃잎 궤도를 따라 우주 멀리 갔다가 다시 태양으로 근접해오는 선회비행을 계속하게 된다. PSP의 ‘태양을 터치하라!'(Touch the Sun)라는 미션 이름은 기존의 어떤 태양 탐사선보다 태양에 가까이 접근하기 때문에 붙여진 것이다. 목표 접근 거리는 616만km로, 이는 1976년 헬리오스 2호가 세운 기록(4300만km)보다 7배나 가까운 거리다. 그렇다고 PSP가 댓바람에 그 거리까지 접근하는 것은 아니다. 궤도를 돌 때마다 조금씩 좁혀나가, 오는 11월 태양에서 2400만km 떨어진 궤도에 처음 진입한 뒤, 2025년 6월쯤 616만km까지 접근한다. 태양과 지구 사이의 거리를 100m라 한다면 태양에 4m까지 바짝 접근하는 셈이다. 이번 태양 미션의 2대 과제는 태양 대기인 코로나가 태양 표면 온도 6000도보다 수백 배나 높은 이유, 그리고 태양풍의 엄청난 풍속이 어디서 기인하는가 하는 비밀을 푸는 것이다. 또한 태양이 어떻게 태양 플레어 같은 현상을 일으키는지 알아내는 것도 포함된다. 태양풍과 태양 플레어는 우주여행, 인공위성, 심지어 지구에서의 삶에 심각한 영향을 미친다. 심우주를 탐사하는 우주인의 건강을 지키기 위해서도 태양풍에 관한 연구는 필수적이다. PSP가 이들에 관한 모든 데이터를 수집하는 동안 지구와의 통신은 중단된다. 대신, 가능한 한 많은 관측을 하는 데 집중할 것이며, 그런 다음 대량의 정보를 일괄적으로 전송한다. 과학자들은 PSP가 오는 11월 최초로 근일점을 통과할 때 태양에 관한 놀라운 통찰을 보여줄 것으로 기대하고 있다. 파커 미션의 기간은 7년으로 2025년 중반까지 지속될 예정이다. 그때까지 탐사선이 여전히 열 방패 뒤에 숨겨진 섬세한 장비를 보호하기 위한 자세 제어용 연료를 가지고 있다면, 담당 과학자들은 파커에게 연장 근무를 명령할 것이 분명하다. 거금을 쏟아부은 만큼 최대한 뽑아내야 하기 때문이다. 그러나 머잖아 연료는 바닥날 것이며, 탐사선은 무동력 상태로 떨어져 하이테크 열 방패도 더이상 쓸모없어진다. 그러면 PSP의 운명은 어떻게 될까? 과학자들은 탐사선의 각종 장비와 골격은 열 차폐막을 제외하곤 아무것도 남지 않을 때까지 천천히 떨어져나갈 것이라고 예상한다. PSP 프로젝트 매니저인 앤드류 드리스먼 박사는 파커의 마지막을 이렇게 시적으로 표현한다. “탐사선이 연료를 소진한 후 장비들이 하나씩 해체되는 데는 10년, 20년이라는 긴 시간이 걸린다. 그러면 이들로 인해 생긴 탄소 디스크가 태양 궤도를 따라 떠돌 것이다. 태양이라는 별이 자신의 에너지로 길러냈던 인간이 기술을 개발해 만들어낸 물건이 자신의 품으로 날아들어 산화하고, 그 유물이 외로이 태양 궤도를 떠돌게 되는 셈이다. 우리는 그것이 얼마나 오래 태양 궤도를 떠돌 것인지 짐작할 수 있다. 아마도 그 탄소 디스크는 태양계가 종말을 맞을 때까지 그렇게 태양 주위를 떠돌 것이다.” 이광식 칼럼니스트 joand999@naver.com 
  • [유용하 기자의 사이언스 톡] 스파게티 면에도 ‘과학’이 숨어있다

    [유용하 기자의 사이언스 톡] 스파게티 면에도 ‘과학’이 숨어있다

    3조각 이상으로 부러지는 스파게티 MIT 연구팀 ‘두 조각 내는 법’ 찾아 2·3차원 재료 구조역학 통제법 얻어 광섬유·철근 구조나 배치법에 응용요즘같이 더운 날씨에는 얼음을 둥둥 띄운 동치미 국수나 겨자와 식초를 약간 뿌려 시원한 국물과 함께 면을 훌훌 넘길 수 있는 냉면 생각이 간절합니다. 면(麵)을 좋아하신다면 이탈리아의 대표적인 면요리인 파스타는 어떤가요. 파스타는 재료의 종류에 따라 160여 가지, 면의 형태에 따라 600여 가지가 넘는 요리로 만들어질 수 있다고 합니다. 대형마트에 가 보면 다양한 형태의 파스타 면을 볼 수 있습니다. 그중 가장 익숙한 것은 국수처럼 긴 파스타인 ‘스파게티’입니다. 기다란 스파게티 면에는 세계 최고의 과학자들도 골머리를 앓게 만든 ‘과학’이 숨어 있습니다. 스파게티 면으로 간단한 실험을 해 보면 알 수 있습니다. 스파게티 면을 하나 꺼내 양쪽 끝을 잡은 다음 부러질 때까지 구부려 보는 것입니다. 몇 조각으로 부러졌나요. 분명 3조각에서 10조각까지 다양할 겁니다. 재미있는 것은 절대 두 조각으로 부러지지 않는다는 것입니다. 이것이 과학계에서 유명한 ‘스파게티 미스터리’입니다. 알베르트 아인슈타인과 함께 20세기 최고의 물리학자로 평가받고 양자전기역학을 발전시킨 공로로 1965년 노벨물리학상을 받은 리처드 파인먼(1918~1988)도 밤새 스파게티 면을 부러뜨리면서 ‘왜 두 조각으로 부러지지 않는가’에 대한 이론적 설명을 찾으려고 골머리를 앓았다고 합니다. 많은 천재 과학자들을 괴롭힌 스파게티 미스터리는 2005년 프랑스 물리학자들에 의해 풀리기 시작했습니다. 프랑스 파리6대학 바질 오도리, 세바스티앙 노이히르슈 박사는 유체역학에서 탄성체의 움직임을 설명하는 ‘키르히호프 방정식’을 이용해 스파게티가 3조각 이상으로 부러지는 이유를 밝혀내고 물리학 분야 국제학술지 ‘피직스 리뷰 레터스’에 발표했습니다. 스파게티 양쪽 끝에서 정확히 똑같은 힘을 가할 수 없기 때문에 서로 다른 형태의 탄성파가 전달되면서 여러 조각으로 부러지게 된다는 것입니다. 이 연구는 기발하고 기상천외한 연구에 시상하는 ‘이그노벨상’의 2006년 물리학상 분야에 선정되기도 했습니다. 그렇다면 스파게티 면을 두 조각 내는 것은 정말 불가능한 일일까요. 미국 매사추세츠공과대학(MIT)과 코넬대, 프랑스 엑스마르세유대 수학자들이 스파게티 면을 두 조각으로 부러뜨릴 수 있는 방법을 결국 찾아내 미국국립과학원에서 발행하는 국제학술지 ‘PNAS’ 8월 13일자(현지시간)에 발표했습니다. 요른 듄켈 MIT 응용수학 교수가 이끈 국제공동연구팀은 스파게티를 두 조각 내기 위해 특수한 기구까지 만들었습니다. 수백 차례에 걸친 실험 결과 스파게티 한쪽 끝을 270~360도 정도로 비튼 뒤 서서히 힘을 가해 구부려 부러뜨리면 두 조각 낼 수 있다는 것을 밝혀냈습니다. 할 일 없는 과학자들의 심심풀이 연구 같지만 스파게티 미스터리는 2차원이나 3차원 재료의 구조역학을 이해하고 통제하는 데 필요한 아이디어를 제공한다고 합니다. 탄소나노튜브의 강도를 높이거나 외부 스트레스에 오래 견디는 광섬유를 만드는 것은 물론 교량이나 건축물을 지을 때 철근이나 철골을 얼마나, 어떻게 배치해야 하는지에도 적용할 수 있는 중요한 연구라는 것입니다. 논문의 질보다는 양을, 번뜩이는 아이디어보다는 외국의 선행 연구 사례를 요구하는 한국 과학정책 현실에서 이런 독특하고 재미있는 연구를 기대하는 것은 무리가 아닐까 하는 생각이 스쳐 지나갑니다. edmondy@seoul.co.kr
  • [아하! 우주] “태양을 터치하라”…탐사선 ‘파커’ 대장정 오르다

    [아하! 우주] “태양을 터치하라”…탐사선 ‘파커’ 대장정 오르다

    현재 지구 행성 북반구를 뜨겁게 달구고 있는 태양을 향해 인류 최초의 태양 탐사선이 대장정에 올랐다. 미 항공우주국(NASA)은 12일 새벽 3시 31분(한국시간 오후 4시 31분) 플로리다 주 케이프 커내버럴 공군기지에서 탐사선을 실은 델타4 로켓을 성공적으로 발사했다. 애초 NASA는 11일에 발사할 예정이었으나, 기술적인 문제가 발생하여 한 차례 연기한 끝에 이날 성공적으로 발사한 것이다. NASA 수석 과학자 인 짐 그린은 “정말 경이롭다. 우리는 유진 파커가 일어나서 ‘나는 태양이 태양풍을 방출하고 있다고 생각한다’라고 말한 이래 60년 동안 이 일을하고 싶었다”면서 파커 발사에 대한 감회를 표현했다. 이번에 태양으로 쏘아 보내는 탐사선 이름은 '파커 솔라 프로브'(Parker Solar Probe)다. ‘파커’는 60년 전 태양풍의 존재를 밝히는 등, 평생을 태양 연구에 바친 미국 천체물리학자 유진 파커(1927~)를 기리는 뜻에서 따온 것이다. 생존 인물의 이름을 탐사선 이름으로 삼은 것은 이번이 최초이다. 유진 파커 박사는 태양의 2대 비밀 중 하나인 코로나의 고온에 대해 유력한 가설을 내놓은 천문학자다. 태양 대기의 상층부, 곧 코로나의 온도는 태양 표면 6000℃보다 무려 200배나 높은 수백만℃나 된다. 모닥불에서 멀어질수록 열기는 낮아진다. 그런데도 코로나가 이처럼 고온인 것은 대체 무슨 조화일까? 그 이유는 태양 대기 속에서 초당 수백 번씩 일어나는 작은 폭발(nanoflares)들이 코로나 속의 플라스마를 가열시키기 때문이라는 것이 파커의 이론이다. 이번 태양 미션은 태양의 2대 미스터리를 풀어줄 양질의 데이터를 얻기 위해 탐사선을 전례 없이 태양에 가까이 접근시킬 계획이다. ​‘터치 선'(Touch Sun·태양을 터치하라)이라는 프로젝트 명칭처럼 탐사선은 태양으로부터 620만㎞까지 7차례 근접비행을 하는데, 이는 이전 어떤 탐사선의 접근 거리보다 7배나 가까운 것이다. 지금까지 태양에 가장 가까이 접근한 우주선은 1976년 옛 서독의 우주과학센터(DFVLR)와 NASA의 헬리오스B 탐사선으로, 태양 표면으로부터 4300만㎞ 떨어진 지점까지 접근했다. 파커의 목표 접근 거리는 태양과 가장 가까운 행성인 수성-태양 사이 거리(5790만㎞)의 10분의 1 수준이다. 이 정도만 접근해도 태양은 지구에서 보는 것보다 23배나 크게 보인다. 더 이상 접근한다면 텅스텐도 녹여버리는 지옥불 속으로 떨어지는 꼴이 되고 만다. 문제는 1,370℃까지 치솟는 엄청난 실외 온도, 지구에 비해 475배 강한 태양 복사로부터 어떻게 탐사선과 기기들을 보호하느냐 하는 점인데, 이를 위해 파커 탐사선은 11.43cm 두께의 탄소복합체 외피로 된 열방패로 실내온도 27℃를 유지하도록 설계되었다. 이 태양 탐사선에는 전자기장과 플라스마, 고에너지 입자들을 관측할 수 있는 장비들과 태양풍의 모습을 3D 영상으로 담을 수 있는 카메라 등이 탑재된다. 이 장비들로 태양의 대기 온도와 표면 온도, 태양풍, 방사선 등을 정밀 관측한다. 태양의 두 번째 수수께끼는 태양풍의 속도에 관한 것이다. 태양풍이란 말 그대로 태양에서 불어오는 대전된 입자 바람으로 ‘태양 플라스마’라고도 한다. 태양은 쉼 없이 태양풍을 태양계 공간으로 내뿜고 있는데, 우리 지구 행성을 비롯해 태양계의 모든 천체들은 이 태양풍으로 멱을 감고 있다고 보면 된다. 이런 태양풍이 어떨 때는 엄청난 에너지를 뿜어내기도 하는데, 이를 ‘코로나 질량 방출'(CME)이라 한다. 태양 흑점 등에서 열에너지 폭발이 발생하면 거대한 플라스마 파도가 지구를 향해 초속 400~1000㎞로 돌진한다. 이럴 경우 마치 지구 자기장에 구멍이 난 것처럼 대량의 입자들이 지구에 영향을 미치는데, 이를 ‘태양폭풍’이라 한다. 가장 최근 관측된 태양폭풍은 2013년 10월 말부터 11월 초 사이에 일어났다. 이로 인해 태양을 관측하던 인공위성인 SOHO가 고장나고 지구 궤도를 돌던 우주선들이 크고 작은 손상을 입었으며, 국제우주정거장에 있던 우주인들은 태양폭풍이 뿜어내는 강력한 방사선을 피해 안전지역으로 대피해야 했다. 그런데 이 태양풍의 엄청난 속도가 어떻게 만들어지는지를 아직까지 모르고 있다. 태양 표면에서는 그런 속도를 만들 만한 기제가 없다. 따라서 태양풍은 태양 표면에서 행성까지 오는 공간에서 그런 속도를 얻는다고 볼 수밖에 없는데, 그 원인을 전혀 파악하지 못하고 있다는 말이다. 이것이 이번 태양 미션에서 풀어내야 할 큰 미스터리다. 태양풍에 대한 정확한 관측이 필요한 것은 이를 미리 예측하고 대비해야 인적·물적 피해를 줄일 수 있기 때문이다. 또한 태양풍의 영향을 이해하는 것은 인간이 달과 화성, 나아가 심우주를 탐험하는 데 필수적이다. 파커 솔라 프로브는 이를 위해 2018년에서 2025년까지 24차례 태양에 근접비행하며 태양 궤도를 24차례 돈 후 태양 코로나 속으로 급강하할 예정이다. NASA는 태양으로 보내는 탐사선에 파커 박사의 사진과 그의 논문이 담긴 메모리 칩을 탑재했다. 메모리 칩에는 '앞으로 무슨 일이 벌어질지 두고 보자'(Let’s see what lies ahead)라는 파커 박사의 메시지도 담겨 있다. 10월 초 7차례 금성에 중력 도움을 받은 뒤 11월 태양 궤도에 진입할 것으로 예상되는 파커 솔라 프로브가 과연 태양의 2대 비밀을 풀 실마리를 찾아낼 수 있을 것인지, 과학자들은 기대에 부풀어 있다. 이광식 칼럼니스트 joand999@naver.com   
위로