찾아보고 싶은 뉴스가 있다면, 검색
검색
최근검색어
  • 물리학자
    2025-12-09
    검색기록 지우기
  • 경희대학교
    2025-12-09
    검색기록 지우기
  • 국회법
    2025-12-09
    검색기록 지우기
  • 반려묘
    2025-12-09
    검색기록 지우기
  • 이슬람국가(IS)
    2025-12-09
    검색기록 지우기
저장된 검색어가 없습니다.
검색어 저장 기능이 꺼져 있습니다.
검색어 저장 끄기
전체삭제
1,844
  • [이광식의 천문학+] 우주의 당구공 치기 - 공짜로 중력을 ‘슬쩍’하는 방법​

    [이광식의 천문학+] 우주의 당구공 치기 - 공짜로 중력을 ‘슬쩍’하는 방법​

    ‘내 엉덩이를 걷어차 다오’ 2015년 7월, 역사적인 명왕성 근접 비행을 성공한 뉴호라이즌스호의 비행속도는 초속 20㎞(시속 7만 5200㎞)였다. 이는 인간이 만들어낸 속도 중 최고 속도로, 총알 속도의 20배에 달하는 것이다. 현재 인류가 가진 자원과 로켓으로 태양의 중력을 뿌리치고 나아갈 수 있는 한계는 목성 정도까지다. 그럼 무슨 힘으로 뉴호라이즌스는 명왕성까지 그처럼 빠른 속도로 날아갈 수 있었을까? 답은 '중력 도움'(gravity assist)이었다. 중력 보조라고도 하는 이 중력 도움은 영어로는 스윙바이(swing-by), 또는 플라이바이(fly-by)라고도 하는데, 한마디로 ‘행성궤도 근접 통과’로 중력을 슬쩍 훔쳐내는 일이다. ​ 그랜드피아노만 한 크기에 무게는 478㎏인 뉴호라이즌스가 발사될 때의 탈출속도는 지구 탈출속도인 11.2㎞를 훨씬 넘는 초속 16.26 km로, 지금까지 인간이 만들어낸 물체 중 가장 빠르게 지구를 탈출한 것으로 기록되었다. 그런데 탐사선이 1년을 날아가 목성에 근접해서는 이 중력 도움 항법으로 초속 4㎞의 속도를 공짜로 얻었다. 이로 인해 명왕성으로 가는 시간을 약 3년 단축할 수 있었다. 중력 도움을 간단히 설명하자면, 탐사선의 속도를 높이기 위해 천체의 중력을 이용한 슬링 숏(slingshot·새총쏘기) 기법으로, 행성의 중력을 이용해 우주선의 가속을 얻는 기법이다. 탐사선이 행성의 중력을 받아 미끄러지듯 가속을 얻으며 낙하하다가 어느 지점에서 적절히 진행각도를 바꾸면 그 가속을 보유한 채 새총알처럼 튕기듯이 탈출하게 된다. 행성의 각운동량을 훔쳐서 달아나는 셈이다. 말하자면 우주의 당구공 치기쯤 되는 기술이다. 행성의 입장에서 본다면 우주선의 엉덩이를 걷어차서 가속시키는 셈으로, 이론상으로는 행성 궤도속도의 2배에 이르는 속도까지 얻을 수 있다. ​중력 도움을 받기 위해 우주선은 대상 천체에 대해 쌍곡선 궤적을 그릴 수 있는 조건으로 접근해야 한다. 쌍곡선 궤적은 우주선이 어떤 행성(쌍곡선 궤적의 초점이 된다)의 중력권 내를 잠깐 비행하더라도 그 행성의 중력권에 잡히지 않는 궤도가 된다. 태양을 초점으로 공전하는 혜성들의 궤도가 대개 이 쌍곡선 궤적이다. 혜성들은 거의 태양을 향해 쌍곡선을 그리며 가까이 다가왔다가 다시 멀어지는 형태의 궤적을 그린다. 중력 도움을 받으려는 우주선의 상대속도가 행성의 중력에 포획되지 않을 만큼 충분히 빠를 때 이런 식의 근접비행이 가능하다. 현재까지 인류가 개발한 로켓의 힘으로는 겨우 목성까지 날아가는 게 한계이지만, 이 스윙바이 항법으로 우리는 전 태양계를 탐험할 수 있게 된 것이다. 중력 도움으로 목숨 구한 이야기 중력 도움이란 이 기발한 아이디어를 처음으로 떠올린 사람은 20세기 초반 러시아의 이론물리학자 ​유리 콘드라트유크였고, 뒤에 미국의 수학자 마이클 미노비치가 더욱 섬세하게 가다듬었다. 중력 도움을 최초로 활용한 우주선은 러시아의 달 탐사선 루나 3호였다. 1959년 달의 뒷면을 촬영하기 위해 발사된 루나 3호는 중력 도움으로 달의 뒷면을 돌면서 찍은 사진을 지구로 전송했다. 인류에게 달의 뒷면을 최초로 볼 수 있게 해준 루나 3호는 그후 달에 추락하여 고철 덩어리가 되었다. 중력 도움으로 사람의 목숨을 건진 사례도 있다. 바로 아폴로 13호의 얘기다. 1970년 4월 달 착륙을 목적으로 발사되었던 이 우주선은 지구로부터 32만㎞ 떨어진 달의 중력권에서 선체의 이상 진동으로 산소 탱크가 폭발해 사령선이 심각하게 파손되었다. 세 승무원은 사령선을 버리고 달 착륙선으로 옮겨 탔다. 당연히 달 착륙 미션은 중단되었고, 미 항공우주국(NASA) 관제본부의 비행감독 진 크렌즈는 세 승무원의 귀환시킬 수 있는 유일한 방법은 달의 중력 도움으로 달 착륙선을 귀환궤도에 올릴 수밖에 없다고 생각했다. 사령선의 엔진을 이용해 우주선을 지구로 돌리는 게 가장 간단한 방법이었지만, 폭발로 인해 엔진의 정상 가동을 장담할 수 없었다. 만약 실패한다면 3명의 승무원은 영원히 우주의 미아가 되고 말 판이었다. 달의 중력 도움도 결코 만만한 방법은 아니었다. 달 착륙선의 엔진을 이용해 달의 뒤편으로 돌아간 다음 정확한 침로를 잡으면 지구로의 귀환궤도에 오를 수 있지만, 약간의 오차만 나더라도 궤도 수정을 할 수 없기 때문에 지구와는 엉뚱한 방향으로 가버릴 위험이 있는 것이다. 참으로 목숨을 걸고 하는 도박이었다. 관제센터는 우주선의 궤도에 영향을 주지 않기 위해 우주선 바깥으로 소변을 투기하는 것까지 금지시켰다.(이 명령이 소변 금지인 줄 착각하는 바람에 소변을 참았던 한 승무원은 요로 감염에 걸렸다.) 승무원들은 손에 땀을 쥐게 하는 기동으로 달의 중력 도움을 받은 끝에 귀환 궤도에 올랐다. 그들이 지구 상공에 모습을 드러낼 때까지 세계는 숨을 죽이고 사태의 진행을 지켜보았다. 이윽고 착륙선 아쿠아리우스를 떼어낸 후, 사령선 오디세이가 무사히 태평양에 착수했을 때 세계는 환호성을 올렸다. 살아서 돌아올 확률이 지극히 낮았음에도 달의 중력 도움을 받은 끝에 무사히 귀환할 수 있었던 것이다. 만약 폭발이 착륙선을 떼어낸 후에 일어났으면 승무원들이 생환했을 확률은 제로였다. 아폴로 13호의 사고에 관한 내용은 1995년 '아폴로 13'이라는 제목으로 영화화되었다.​태양계를 누비는 힘 ‘스윙바이’​ 중력 도움이라는 아이디어가 없었더라면 목성 너머의 태양계는 우리에게 그림의 떡이었을 것이다. 목성에 갈릴레오호를, 토성에 카시니호를, 그리고 해왕성과 그 너머까지 보이저 1,2호를 보낼 수 있게 된 것도 모두 중력 도움 덕분이었다. 연료를 별로 사용하지 않고도 비교적 빠른 시간 내에 목적지에 도착할 수 있기 때문에 현재 거의 모든 탐사선이 다른 행성 궤도에 진입하는 스윙바이 항법을 선택한다. 스윙바이를 활용해 처음으로 토성에 다다른 탐사선은 1973년 발사된 파이어니어 11호였고, 태양계 바깥쪽의 거대 행성들인 목성, 토성, 천왕성, 해왕성을 탐사하기 위해 발사된 보이저 1,2호는 처음부터 당시 최신 기술이던 중력 도움을 사용하도록 설계된 탐사선이다. ​ 1989년 미국 케네디 우주센터에서 발사된 목성 탐사선 갈릴레오는 자체 추진력으로만으로는 목성까지 갈 수가 없어 ‘여비’를 금성과 지구로부터 훔쳐왔다. 갈릴레오는 발사 4개월 정도 후에 금성으로부터 2.2㎞/s, 다시 10개월 후 지구로부터 5.2㎞/s, 다시 2년 후 지구로부터 3.7㎞/s의 속도를 각각 훔쳐냈는데, 세 차례에 걸쳐 훔쳐낸 속도 증가분은 무려 11.1㎞/s나 되었다. 갈릴레오가 지구로부터 두 차례 훔쳐낸 속도 증가분의 합은 8.9㎞/s나 된다. 지구는 그만큼 갈릴레오에게 각속도량을 빼앗긴 셈이다. 하지만 그래 봤자 갈릴레오의 질량 2,380kg은 지구 질량에 비하면 거의 0에 가깝다. 그래서 지구는 1억 년 동안 1.2cm쯤 늦춰지는 데 지나지 않는다. 어쨌든 중력 도움의 힘으로 6년 여 만인 1995년 12월 목성 궤도에 도착한 갈릴레오는 목성의 대기권과 그 주변, 특히 목성의 네 위성인 에우로파, 칼리스토, 이오, 가니메데의 탐사를 비롯해, 싣고 간 원추 모양의 탐사선을 목성의 구름 사이로 투하해 목성 대기의 온도, 기압, 화학 조성 등을 보고하는 등, 8년 동안 목성 궤도를 돌면서 혁혁한 전과를 올린 후, 2003년 9월 21일에 최후를 맞았다. 인공물로 가장 멀리 날아간 보이저 1호​​사람이 만든 물건으로 가장 우주 멀리 날아간 기록을 세운 것은 보이저 1호다. 총알 속도의 17배인 초속 17㎞의 속도로 날아가고 있는 보이저 1호 역시 중력 도움을 받은 탐사선이다. 본래 태양계 바깥쪽의 거대 행성들인 목성, 토성, 천왕성, 해왕성을 탐사하기 위해 1977년에 발사된 보이저 1호는 올해로 꼬박 42년을 날아가는 셈이다.​ 일명 ‘행성간 대여행’이라 불리는 행성의 배치가 행성간 탐사선의 개발에 영향을 주었는데, 이 행성간 대여행은 연속적인 중력 도움을 활용함으로써, 한 탐사선이 궤도 수정을 위한 최소한의 연료만으로 화성 바깥쪽의 모든 행성(목성, 토성, 천왕성, 해왕성)을 탐사할 수 있었던 것이다. 이 항법을 활용하기 위해 보이저는 행성들이 직선상 배열을 이루는 드문 기회(몇백 년에 한 번꼴)를 이용했는데, 목성의 중력이 보이저를 토성으로 내던지고, 토성은 천왕성으로, 천왕성은 해왕성으로, 그 다음은 태양계 밖으로 차례로 내던지게 되는 것이다. 이렇게 우주의 당구치기를 하면서 날아갈 보이저 1호와 2호는 발사 시점도 대여행이 가능하도록 맞춰졌다. 현재 보이저 1호가 있는 곳은 태양계를 벗어난 성간공간으로 거리는 약 220억㎞쯤 된다. 이 거리는 초속 30만㎞인 빛이 달리더라도 20간이 넘게 걸리며, 지구-태양 간 거리의 145배(145AU)가 넘는 거리다. 거기에서 보이는 태양은 여느 별과 다름없는 흐릿한 별 하나에 지나지 않을 것이다. 보이저 1,2호가 지구를 떠날 때 공급받은 연료는 목성까지 갈 수 있는 분량이었다. 목성 너머 가는 에너지는 목성의 중력 도움으로 조달하라는 뜻이었다. 만약 목성이 탐사선의 엉덩이를 걷어차주지 않는다면, 보이저는 태양 기준으로 지구보다 더 가까워지지 않고 목성보다 더 멀어지지도 않는 타원형 궤도에 갇혀 영원히 뺑뺑이 도는 신세를 면치 못했을 것이다. 그러나 ​당시 최신 기술이던 중력 도움을 사용하도록 설계된 보이저 1호는 스윙바이 기법을 이용해 목성 중력에서 시속 6만㎞의 속도증가를 공짜로 얻었다. 보이저가 목성의 중력을 이용해 추진력을 얻을 때, 목성은 그만큼 에너지를 빼앗기는 셈이지만, 그것은 50억 년에 공전 속도가 1mm 정도 뒤처지는 것에 지나지 않는다. 보이저 1호는 목성의 중력 도움을 받은 덕으로 지금 이 순간에도 인간이 가본 적이 없는 미지의 세계를 향해 ​용맹정진하고 있다. 2025년이면 전력이 바닥나 지구와의 교신이 끊어지고 보이저는 침묵의 척후병이 되겠지만, 앞으로 4만 년 정도 더 날아가면 1.5광년, 15조㎞를 주파해 기린자리의 어느 이름없는 별 옆을 지날 것이다. 어쨌든 이처럼 인류가 지구상에 나타난 이래 최초로 태양계 너머 심우주 속으로 보이저라는 척후병을 보내 ​탐색할 수 있게 된 것도 ​한 물리학자의 상상력이 떠올린 중력 도움으로 가능해진 것이다. 이처럼 인간의 상상력은 위대하다. 아인슈타인의 말마따나 상상력은 지식보다 위대하다는 사실을 실감할 수 있다. 이광식 칼럼니스트 joand999@naver.com 
  • 역대 가장 자세하다…블랙홀의 ‘먹방 과정’ 최신 시뮬레이션으로 공개

    역대 가장 자세하다…블랙홀의 ‘먹방 과정’ 최신 시뮬레이션으로 공개

    블랙홀에 관한 역대 가장 자세한 시뮬레이션을 보여주는 연구 결과가 나왔다. 덕분에 이 천체가 어떻게 물질을 흡수하는지 그 수수께끼가 40년 만에 풀릴지도 모른다. AFP통신에 따르면, 미국 노스웨스턴대와 영국 옥스퍼드대 그리고 네덜란드 암스테르담대 등이 참여한 국제 천체물리학 연구진이 시행한 최신 시뮬레이션 연구로 블랙홀의 생성과 성장 구조를 밝혀내는 데 몇 걸음 더 다가가게 됐다. 블랙홀은 커다란 별이 자기 중력 때문에 붕괴할 때 생긴다. 사실 검은 구멍이라는 이름과 달리 엄청나게 밀도가 높은 천체로 너무 강력한 중력을 지녀 빛조차 빠져나올 수 없다. 특히 이 천체는 가스와 먼지 그리고 천체 파편 같은 물질을 흡수할 때 그 주변에 ‘강착원반’을 생성한다. 이는 중력에 의해 찢긴 많은 양의 입자가 엄청나게 빠른 속도로 회전하는 것으로 강력한 빛을 내뿜는다. 지난 4월 ‘이벤트 호라이즌 망원경’(EHT) 프로젝트 연구진이 사상 처음으로 관측한 블랙홀 이미지에서 중심 주위에 나타난 흐릿한 후광이 바로 강착원반이다. 하지만 강착원반은 블랙홀의 적도면에서 거의 항상 비스듬히 기울어져 있다고 알려졌다. 1956년과 1972년 두 차례 노벨물리학상을 받은 유일한 사람으로도 유명한 물리학자 존 바딘(1908~1991) 박사는 천체물리학자 야코뷔스 페테르손(1946~1996) 박사와 함께 1975년 회전하는 블랙홀은 기울어진 강착원반의 내부 영역이 실제로는 블랙홀의 적도면과 일렬로 늘어선다는 이론을 세웠다. 하지만 지금까지 어떤 모델로도 정확히 이런 일이 어떻게 일어나는지를 알아낼 수 없었다. ‘왕립천문학회월간보고’(MNRAS) 최신호(5일자)에 게재된 연구논문에 따르면, 연구진은 그래픽처리장치(GPU)로 대량의 자료를 분석해 블랙홀이 강착원반과 어떻게 상호작용하는지를 시뮬레이션했다. 결정적으로, 이런 접근 방식은 자기장 난류를 설명하는 계산적 능력을 연구진에게 부여했다. 자기장 난류는 서로 다른 입자들이 강착원반 안에서 서로 다른 속도로 회전할 때 발생하는 것으로, 이런 전자기 효과가 물질을 정확히 블랙홀 중심에 떨어뜨린다는 것이다. 이전까지 시뮬레이션에서는 물질이 블랙홀로 흡수될 때 필요한 것으로 생각되는 추가적인 마찰을 수동적으로 예측해야만 했다. 하지만 이번 모델에서는 이런 마찰을 예측할 필요가 없다고 연구에 참여한 알렉산더 체호프스코이 박사(노스웨스턴대)는 밝혔다. 이와 함께 이번 시뮬레이션에 자기장을 도입할 때 실제로 자기장에 의해 불안정성이 생기고 그 결과 강착원반이 블랙홀 중심으로 떨어지게 된다고 말했다. 또 체호프스코이 박사는 비록 이는 사소하게 보일지도 모르지만, 블랙홀이 얼마나 빨리 회전하는지에 직접 영향을 줘 그 결과 블랙홀은 주변에 있는 은하에 직접 어떤 영향을 주게 된다고 설명했다.이번 모델의 시뮬레이션을 보면 중심에서 분수처럼 확산하는 가스와 자기장이라는 두 종류의 제트를 지닌 강착원반이 생성된다. 이때 강착원반 바깥 부분은 기울어져 있지만 안쪽 부분은 블랙홀의 적도면과 완벽하게 정렬돼 있다는 것을 보여준다. 끝으로 체호프스코이 박사는 “이전에는 자기장과 강착원반 속 난류 그리고 와류 등 물질과 상호작용하는 모든 요인을 고려했을 때 이런 것이 정렬 효과를 없앨 것이라는 우려가 있었다”고 말했다. 하지만 이번 연구에서는 실제 작용이 사라지는 것이 아니라 강착원반 안쪽 부분이 실제로 블랙홀과 정렬해 있는 것으로 나타났다. 이로써 블랙홀이 어떻게 보일지에 대해 더욱더 자신 있게 예측할 수 있게 됐다고 체호프스코이 박사는 덧붙였다. 사진=노스웨스턴대 윤태희 기자 th20022@seoul.co.kr
  • [핵잼 사이언스] ‘할아버지 패러독스’? - 시간여행은 정말 가능한가?

    [핵잼 사이언스] ‘할아버지 패러독스’? - 시간여행은 정말 가능한가?

    우주 전문 사이트 스페이스닷컴 5일자(현지시간)에 그레그 우에노의 시간 여행에 관한 흥미로운 칼럼이 발표되어 아래에 소개한다. 우에노는 과학의 대중화를 위해 많은 글을 써온 미국의 유명 과학 칼럼니스트이다. '할아버지 패러독스'는 우리가 시간을 거슬러 과거로 여행할 때 생길 수 있는 논리적인 문제이다. 만약 어떤 사람이 과거로 여행을 떠나 자기 할아버지가 자기 아버지를 낳기 전에 그를 죽인다면, 그 자신은 태어나지도 못하게 된다. 이건 모순이다. 그래서 할아버지 패러독스란 이름을 얻게 되었다. 따라서 만약 시간여행이 가능하게 된다면 이런 모순을 어떻게든 피해야 한다는 문제가 생긴다. 시간여행의 논리적 불일치는 시간 왜곡(time-warping)을 다룬 SF에 자주 등장하는 주제이지만, 철학자들에게도 흥미로운 문제이기도 하다. 물리학과 철학에 관해 많은 책을 쓴 뉴욕대학의 철학자 팀 모들린은 할아버지 패러독스 초기 버전에서 이런 논리적 근거를 들어 시간여행이 불가능하다고 주장한다. 그는 “말하자면 그것은 지금 당장 젖지 않고는 완전히 마를 수 없는 것과 같은 이치”라고 비유하면서 “따라서 시간여행이란 논리적으로 불가능한 일이다. 더 이상 뭘 설명해야 하나?”라고 못박았다. 그러나 할아버지 패러독스 같은 모순이 곧 시간여행이 불가능하다는 것을 의미하지는 않는다. 시간여행의 논리적 일관성은 시간의 개념에 크게 달려 있으며, 물리학자들은 시간의 개념화를 여러 가지 다른 방법으로 모색하고 있다. 예를 들어, 물리학의 일부 법칙이 결정론적이 아니라 확률론에 따른다면, 시간의 역행으로 인해 여러 다른 결과가 발생할 가능성이 있으며, 그 중 일부는 모순되지 않을 수도 있다. “논리적으로 일관된 해결책이 없는 상황을 생각해내는 것은 생각보다 더 어렵다”고 말하는 모들린은 논리적으로 모순이 없는 시간여행 이야기를 위해, 그는 여행자가 시간을 거슬러 올라가서 자신을 쏘는 예를 제시한다. 시간여행자인 ‘그’는 ‘과거의 자신’을 죽이기 위해 총을 쏘지만 손이 떨리는 바람에 상처를 입히는 것으로 끝나고 만다. 여행자의 과거 버전에서 신경 손상을 입은 그 자신은 남은 생애 동안 수전증을 겪게 된다는 논리이다. 시간여행의 개념은 또한 과거의 인과관계나 역인과 관계를 변화시키는 아이디어와 분리될 수 있다. 그러나 모들린은 역인과관계가 가능하다고 생각하지 않는다. “역인과관계는 시간 자체의 본성에 반하는 것”이라고 규정하는 그는 “그것은 다수 의견이 아니다” 라고 덧붙였다. 그렇다면 시간이란 무엇인가? 서양 문화권의 사람들은 시간을 선(線)으로 생각하는 경향이 있다. 현재는 그 선의 가운데 어딘가에 있는 한 지점이며, 그 지점을 중심으로 하여 양방향으로 과거와 미래가 뻗어 있다고 생각하는 것이다. 시작이나 끝이 있을 수도 있지만, 끝이 없을 수도 있다. 지구 시간에 대한 뉴턴적인 개념은 우주의 모든 곳에서 같은 시간대가 적용된다는 생각이다. 그러나 철학자나 과학자, 또는 SF 작가 들은 더 많은 차원과 기능을 가진 다양한 버전의 시간을 꿈꿔왔다. 시각적으로 보면, 루프, 원, 모래 시계, 뫼비우스 띠, 튜브의 형태를 취한다. 아인슈타인의 상대성 이론은 특히 시간 개념에 큰 영향을 미쳤다. 상대성 이론은 이론적으로 닫힌 시간꼴 곡선(Closed timelike Curve)으로 일컬어지는 구조에서는 공간과 시간이 그 자체로 포개지는 것을 허용한다. 이러한 시간 루프가 존재하면 루프 내부의 사람들이 동일한 순간을 재방문할 수 있으므로 시간여행의 한 형태가 된다. 시간여행 이야기는 시간여행이 가능하다는 가정 하에서 이루어지지만, 작가들은 시간여행에 따르는 역설에 대해 그다지 걱정하지 않는 듯하다. 작가는 개인적 또는 역사적 사건에 관해 ‘만약’이라는 꼬리표를 붙인 흥미로운 질문을 제기할 수 있다. 모들린은 논리적으로 일관성을 갖추려는 노력에 감사하지만, 시간여행은 대부분 이야기를 위한 단순한 장치라고 규정하면서 “요점은 시간여행이 아니라 반사실적이라는 것”이라고 덧붙였다. 이광식 칼럼니스트 joand999@naver.com 
  • [유용하 기자의 사이언스 톡] 양자도약 사전 예측 시스템 개발… ‘슈뢰딩거의 고양이 역설’ 뒤집다

    [유용하 기자의 사이언스 톡] 양자도약 사전 예측 시스템 개발… ‘슈뢰딩거의 고양이 역설’ 뒤집다

    귀여운 고양이 한 마리가 밖에서는 절대 볼 수 없는 완전히 밀폐된 상자 속에 갇혀 있습니다. 상자 안에는 치명적인 독약인 청산가리가 담긴 병이 있습니다. 독극물 병 위에는 망치가 있고 망치는 방사능을 측정하는 가이거 계수기와 연결돼 있습니다. 방사능이 감지되는 순간 망치가 떨어져 병은 깨지고 청산가리 가스가 흘러나와 고양이는 죽게 됩니다. 상자 안에는 시간당 50%의 확률로 핵붕괴하는 우라늄도 들어 있습니다. 한 시간 뒤 우라늄이 붕괴되면서 방사능을 내뿜어 가이거 계수기를 작동시킬 확률이 50%라는 말입니다. 한 시간 뒤 상자 속 고양이는 어떻게 됐을까요. 정답은 ‘상자를 열기 직전까지는 살아 있거나 죽어 있는 상태가 섞여 있으며 상자를 여는 순간 양자 상태가 무작위로 바뀌어 죽거나 살아 있게 된다’입니다. 상식적으로 도저히 이해할 수 없는 이 설정이 바로 물리학과, 화학과 학생들을 멘붕에 빠뜨려 양자역학을 포기하게 만든다는 ‘슈뢰딩거의 고양이 역설’입니다. 지난해 세상을 떠난 영국의 물리학자 스티븐 호킹마저도 ‘누군가 슈뢰딩거의 고양이 이야기를 꺼낸다면 난 조용히 총을 빼들 것’이라고 말했을 정도입니다. 독일 물리학자 베르너 하이젠베르크가 만든 불확정성 원리는 간단히 말하면 원자나 분자 같은 미시세계에서는 입자의 위치와 운동량을 둘 다 정확하게 측정할 수 없다는 것입니다. 하나를 측정하는 동안 다른 하나가 변해 버리기 때문이라는 것입니다. 고전물리학에서와 달리 입자의 물리적 상태를 확률적으로만 설명할 수밖에 없다는 것이지요. 오스트리아 물리학자 에르빈 슈뢰딩거는 파동방정식을 만들어 양자역학을 완성했다는 평가를 받았지만 양자역학의 확률론적 해석을 도저히 받아들일 수 없었습니다. 그래서 양자역학의 확률론을 논박하기 위해 만들어 낸 사고 실험이 바로 ‘슈뢰딩거의 고양이 역설’이었습니다. 그런데 미국 예일대 응용물리학과, 예일양자연구소, IBM 왓슨연구센터, 뉴질랜드 오클랜드대 광자·양자기술센터, 프랑스 컴퓨터과학연구소(INRIA) 공동연구팀이 큐비트로 알려진 양자 정보를 포함한 인공원자를 이용해 양자도약을 사전 예측할 수 있는 시스템을 만들어 냈습니다. 오랫동안 양자역학을 지탱해 온 양자중첩과 예측불가능성이라는 개념을 뒤집었다고 평가를 받는 이번 연구 결과는 세계적인 과학저널 ‘네이처’ 6월 4일자에 실렸습니다. 양자도약은 원자 내부에서 전자가 불연속적으로 궤도를 움직이는 현상입니다. 전자가 어느 위치에 있을지는 확률적으로 알 수밖에 없기 때문에 언제 어떻게 양자도약이 일어나는지를 예측하는 것은 불가능한 일이었습니다. 연구팀은 알루미늄 상자에 둘러싸여 있는 초전도 인공원자에 마이크로파를 쪼인 뒤 ‘이중 간접 모니터링 방식’으로 인공원자를 관찰하는 동시에 양자도약을 예측해 내는 데 성공한 것입니다. 이번 기술은 양자컴퓨터를 개발할 때 정보를 포함하는 큐비트를 손쉽게 제어할 수 있게 해 양자 데이터를 안정적으로 관리할 수 있게 해줄 것으로 기대되고 있습니다. 이번 연구에서도 볼 수 있듯이 과학에서는 깨지지 않을 것 같은 이론도 끊임없는 연구를 통해 새로운 사실이 밝혀져 뒤집힐 수 있습니다. 20세기 초 물리학사에서만 보더라도 과학자들이 상대편과 끊임없는 사고 실험과 논쟁을 통해 현대물리학을 만들었습니다. ‘우리는 맞고 너희는 틀리다’는 언행을 보이면서 ‘과학적, 합리적 태도와 사고방식’을 입에 올리는 것은 정말 웃기는 일입니다. edmondy@seoul.co.kr
  • [아하! 우주] ‘햇빛’ 만으로 추진되는 ‘무한동력’ 우주선 뜬다

    [아하! 우주] ‘햇빛’ 만으로 추진되는 ‘무한동력’ 우주선 뜬다

    햇빛으로 추진되는 우주선이 지구 둘레를 돌게 될 것이라고 미국의 비영리 과학단체 행성협회가 3일(현지시간) 발표했다. 오는 22일 플로리다 케네디 우주센터에서 스페이스X 팰컨 헤비 로켓에 실려 우주로 발사될 이 햇빛돛(LightSail) 2호는 크기가 식빵 한 덩어리만한 것으로, 지구 궤도에 올라가면 접혀 있던 햇빛돛을 펼쳐 돛에 비치는 햇빛(광자)의 광압으로 추진력을 얻어 지구를 공전하게 된다. 햇빛은 태양계 어디서든 무제한으로 확보할 수 있는 만큼 햇빛돛 2호는 사실상 ‘무한동력’ 우주선인 셈이다. 대략 권투 경기장만 한 돛의 소재는 녹음 테이프나 포장지 등에 주로 이용되는 필름인 마일러(Mylar)이며, 무게는 5㎏에 불과하다. 햇빛돛 우주선이 실제 비행에 나서는 것은 이번이 처음이다. 지난 2015년 발사된 햇빛돛 1호는 우주에서 돛을 펴는 실험만 진행했다. 행성협회 대표들은 “성공하면 햇빛돛 2호는 햇빛을 사용하여 지구궤도를 도는 최초의 우주선이 될 것”이라면서 “빛은 질량이 없지만 다른 물체로 옮길 수 있는 운동량을 가지고 있다”고 설명한다. 햇빛돛은 태양으로부터 나오는 광자의 운동량을 추진력으로 사용해 비행하는 것이다.햇빛돛 2호의 주요 목적은 저비용의 큐브샛을 이용해 햇빛을 추진력으로 한 우주비행 시대를 열어 정부나 민간기구들로 하여금 보다 쉽고 저렴하게 우주탐사를 가능하게 하는 데 있다. 이 역사적인 햇빛돛 2호의 발사는 단독으로 이루어지는 것이 아니라, 미 국방부의 우주시험 프로그램-2의 일환으로 실시되는데, 이 프로그램은 24개의 우주선을 각기 다른 3개의 궤도로 진입시키는 것이다. 햇빛돛 2호는 지구궤도에서 다른 우주선과 근접 작업을 수행하는 방법을 보여주기 위해 설계된 조지아 공대의 우주선 프록스(Prox)-1에 실려 우주로 올라간다. 프록스-1은 우주에서 일주일을 보낸 뒤 지상에서 햇빛돛 2호를 궤도에 배치한다. 모든 것이 예상대로 진행된다면, 프록스 2에서 분리된 며칠 후 햇빛돛 2호는 태양 전지판을 펼친 다음 4개의 삼각형 마일러 햇빛돛을 전개한다. 광압이 누적될수록 우주선 고도는 점점 더 높아져 한 달 후면 지구 상공에서 720km 높이까지 치솟게 되는데, 이는 국제우주정거장(ISS) 고도의 두 배가 되는 고도이다. 720㎞의 높은 하늘은 공기 저항을 받지 않아 속력을 높이기 적합한 환경으로, 한번 가속되면 속도가 줄지 않고 연료를 보충할 필요도 없는 햇빛돛 2호는 우주 너머까지 여행할 수 있는 셈이다. 햇빛돛은 이미 우주탐사에 사용된 적이 있다. 2010년 일본우주항공기구(JAXA)는 최초의 우주 범선 이카로스를 발사하여, 지구에서 어느 정도 떨어진 곳에서 햇빛돛을 성공적으로 시연한 최초의 기관이 되었다. 미 항공우주국(NASA)은 2020년이나 2021년쯤 메가 우주발사 시스템 로켓이 탑재물들과 함께 달로 날아갈 때 심우주 햇빛돛 시험비행을 계획하고 있으며, NEA 스카우트 우주선은 햇빛돛을 사용하여 지구 근접 소행성을 탐사할 계획을 세우고 있다. 고인이 된 영국 물리학자 스티븐 호킹 박사도 초소형 우주 돛단배 1000대를 태양계 밖으로 보낸다는 야심찬 우주탐사 프로젝트를 추진한 바 있다. 이광식 칼럼니스트 joand999@naver.com 
  • “이젠 인류가 우주를 망쳐” 천문학계, ‘스페이스X 스타링크’ 우려

    “이젠 인류가 우주를 망쳐” 천문학계, ‘스페이스X 스타링크’ 우려

    지난 23일(현지시간) 테슬라 최고경영자(CEO) 일론 머스크의 민간우주탐사업체 스페이스X가 우주 인터넷을 상용화하기 위한 첫걸음으로 인공위성 60기를 쏘아올리는 데 성공했지만 천문학계에서는 우려의 목소리가 나오고 있다. 인공위성 수가 많아질수록 우주 관측에 어려움이 있을 것이라는 지적이다. 과학전문지 사이언스의 조너선 오캘러건 기자는 포브스 기고를 통해 스페이스X의 스타링크 위성 발사 이후 천문학계에서 터져나오는 우려섞인 시선을 전했다. 24일 60개의 인공위성이 상공에서 열차처럼 줄지어 가는 모습을 본 전문가들은 위성이 예정대로 1만 2000기까지 늘게 되면 천체 관측에 장애를 주고 전파 방해를 초래할 수 있다고 지적했다. 이탈리아 토리노 천체물리학관측소 로널드 드리믈은 “스타링크 위성 군집은 나머지 인류가 우주를 바라보는 데 있어 잠재적 위협이 될 수 있다”면서 “인류가 스스로 하늘을 망치는 결과를 낳을 것”이라고 경고했다. 영국 서섹스대 천체물리학자 대런 베스킬은 “스타링크 위성이 예상보다 훨씬 밝다”면서 “낮은 궤도(상공 550~1200㎞)에서 밝은 빛을 발산함으로써 대형시놉틱관측망원경(LSST) 등 천체 망원경을 무용지물로 만들 수 있다”고 우려했다. 미 항공우주매체 스페이스닷컴 등은 스페이스X가 쏘아올린 스타링크 위성들이 맨눈으로 볼만큼 밝지는 않을 뿐더러, 서로 간격이 벌어지면 밝기도 약해질 것이라고 설명했다. 호주 스윈번대 앨런 더피 천문학 교수는 “최근 위성들이 문제가 되고 있기는 하지만 천문학자들은 관측 때 위성을 제거하는 영리한 기술을 개발하고 있다”면서 “광학 망원경은 지나가는 위성의 모습을 자동으로 삭제해주기도 하며, 전파 망원경은 주파수 갭을 통해 아주 밝은 위성 사이사이를 관측한다”고 설명했다. 그러나 문제는 스페이스X가 쏘아올리려는 1만 2000기 위성이 전례없이 많은 수라는 것이다. 현재 지구 상공에는 5162개의 위성이 있으며 이 중 2000여개가 작동 중이다. 이미 우리는 와이파이와 송신탑, 무선 네트워크 등 수 없이 많은 전파의 파도 속에 살고있다. 더피 교수는 “스타링크 위성들은 지구에서 전파 망원경을 통해 천체를 스캔하는 것을 완전히 끝낼 수도 있다”며 “전 세계에 사각지대 없는 무선 인터넷을 보급하는 것은 엄청난 이점이 있지만 빅뱅이나 별의 탄생 등을 볼 수 없게 될 수 있다”고 말했다. 더피 교수는 이를 해결하기 위해 달에 전파 망원경을 만드는 것을 제안하기도 했다. 호주 플린더스대 연구자 앨리스 고먼은 “스타링크 위성이 10.7~12.7GHz 밴드의 주파수를 사용하는데, 많은 학자가 전파 천문학 연구에 쓰는 주파수와 중첩된다”면서 “매일매일 주파수 대역을 놓고 싸움을 벌여야 할지 모른다”라고 지적했다. 머스크는 그러나 스타링크 위성 프로젝트가 인터넷 사각지대에 놓인 33억명의 인류에게 값싼 인터넷망을 제공해줄 혁신이 될 수 있다며 프로젝트를 강행하겠다는 입장이다. 민나리 기자 mnin1082@seoul.co.kr
  • 쿼크 증명해 40세에 노벨상 美물리학자 겔만 박사 별세

    쿼크 증명해 40세에 노벨상 美물리학자 겔만 박사 별세

    물질의 기본입자 ‘쿼크’의 존재를 증명해 노벨물리학상을 받은 미국의 물리학자 머리 겔만 박사가 눈을 감았다. 89세. AP통신 등은 26일(현지시간) 겔만 박사가 뉴멕시코주 샌타페이의 자택에서 지난 24일 눈을 감았다고 보도했다. 신동으로 유명했던 겔만 박사는 19세에 예일대를 졸업하고 매사추세츠공대(MIT) 대학원에 진학해 21세에 박사학위를 받았다. 25세에 캘리포니아공대(칼텍) 정교수로 임용됐다. 그는 1964년 논문에서 기본입자로 알려졌던 중성자·양성자·전자보다 미세한 쿼크의 존재를 주장하고 증명해냈다. 쿼크는 지금까지 규명된 물질의 구성단위 중 가장 작은 입자다. 겔만은 쿼크의 존재를 밝혀내 물질 형성의 구조를 파악할 수 있게 한 공로로 40세인 1969년에 노벨물리학상을 받았다. 강신 기자 xin@seoul.co.kr
  • [열린세상] 청출어람 청어람/박주용 서울대 심리학과 교수

    [열린세상] 청출어람 청어람/박주용 서울대 심리학과 교수

    학문이 추구하는 바는 해당 학문 분야의 이론적 혹은 실용적 발전이다. 학문적 발전은 간혹 혁명적일 때도 있지만 대개는 누적을 통해 점진적으로 이루어진다. 이런 누진적 변화는 다른 맥락에서 사용된 표현이기는 하지만, 온고지신이나 청출어람으로 특징지을 수 있다. 둘 다 원래 것보다 더 나은 변화를 가리키지만, 앞뒤 맥락을 살펴보면 차이가 있다. 공자가 이야기한 온고이지신 가이위사의(溫故而知新 可以爲師矣)는 그 출발점이 과거다. 옛것을 바탕으로 새로운 지식을 만들어 낼 수 있을 때 비로소 스승이 될 수 있다는 뜻이다. 즉 가르치는 사람은 단순히 지식을 재생산하는 것 이상으로 자신만의 새로운 주장을 펼쳐야 한다는 것이다. 청출어람은 순자의 권학문(勸學文)에 나오는데, 전문을 보면 학불가이이, 청취지어람이청어람, 빙수위지이한어수 (學不可以已 靑取之於藍而靑於藍 氷水爲之而寒於水)다. 학문은 멈추어서는 안 되고, 청색은 쪽에서 나왔지만 쪽보다 더 푸르고, 얼음이 물에서 나왔지만 물보다 더 차갑다는 말이다. 청출어람은 온고이지신보다도 도전적이고 미래지향적이다. 새로운 것을 깨닫는 것도 어려운데 그 깨달음을 뛰어넘는 제자를 배출해야 하기 때문이다. 이런 맥락에서 우리의 학문과 교육의 지향점을 온고지신을 바탕으로 한 청출어람으로 삼았으면 한다. 가르치는 사람이 스스로 생각할 뿐 아니라, 학생들에게 지식 외에 생각하는 방법도 가르치자는 것이다. 그래야만 자신을 능가할 수 있는 제자를 키워 낼 수 있기 때문이다. 사실 어떤 일을 정말 잘하고 싶은 사람은 스스로 탐구하면서 누구에게라도 배우고 비판이나 피드백을 기꺼이 수용하려 한다. 이에 반해 일보다 지위나 자리에 연연하는 사람은 배우려 하지 않고 새로운 시도를 꺼린다. 청출어람을 보여 주는 최고의 사례는 중국 남북조 시대의 공번과 이밀의 관계다. 이밀은 원래 공번의 제자였으나 그의 학문이 깊어지자 공번이 이밀에게 자신의 스승이 되길 요청했다고 한다. 공번의 이같이 놀라운 겸손은 오늘날 한국 사회의 학문 발전에 더 없이 필요해 보인다. 비록 지금은 많이 약화하기는 했지만, 조선 시대 이후 유교적 전통으로 스승의 지위가 지나치게 높이 받들어져 왔기 때문이다. 학문 발전을 위해 단지 자리만 차지하는 것이 아니라, 일을 잘 해내는 사람이 더 많아져야 한다. 배우는 사람에게도 온고이지신과 청출어람을 기대해야 한다. 이탈리아 출신의 세계적 물리학자인 카를로 로벨리는 고대 그리스 철학의 발상지인 밀레토스에서는 이런 기대가 팽배했다고 주장한다. 그런 기대 속에서 만물의 근원이 물이라는 탈레스의 주장에 대해 그의 제자인 아낙시만드로스는 만물의 근원은 아페이론이라는 무형의 근원이 서로 대립하는 요소들로 구체화되면서 물, 흙, 불, 그리고 공기의 네 요소를 만들어 낸다고 주장했다. 아낙시만드로스는 스승의 주장을 그대로 다 받아들이는 대신 일부는 받아들이고 일부에 대해서는 과감히 비판한 것이다. 이런 비판은 종교에서는 물론 피타고라스를 추종한 피타고라스 학파나 공자를 따른 맹자에게서 찾아보기 어렵다. 로벨리는 이 점을 높이 평가해 아낙시만드로스를 인류의 첫 번째 과학자로 칭송했다. 아낙시만드로스가 시작한 전통은 플라톤과 그의 제자 아리스토텔레스에게서도 확인할 수 있다. 오늘날 우리 학문을 가로막는 걸림돌 중 하나는 가르치는 사람들의 지나친 권위주의다. 사실 권위주의는 학문뿐 아니라 한국 사회 전반에 해악을 끼치고 있다. 그럴 여지가 있으면 지위, 나이 심지어 성별을 빌미로 상대방을 무시하는 소위 ‘갑질’이 넘친다. 이런 권위주의 축출에 대학이 나서야 한다. 대학이 새로운 변화의 중심이고, 대학의 핵심 이념인 자유와 진리가 이들로 인해 저해되기 때문이다. 교수들은 공밀과 같은 겸손한 태도로, 학생들이 더 적극적으로 도전할 수 있는 기회를 제공해야 한다. 지금 당장은 지식과 경험이 부족하더라도 지적 탐구의 여정에 함께하는 고마운 길동무로 여겨야 한다. 나아가 자신보다 더 훌륭한 연구를 할 동료로 기대하고 존중하면, 제자들 가운데서 존경할 수 있는 학자들이 더 많이 속출할 수 있다. 패기 있는 젊은 학자들의 등장에 우리 학문의 미래가 달려 있다.
  • 체르노빌을 안다는 생각 뒤집게 만든 드라마, 곰퍼츠 평점 ★★★★★

    체르노빌을 안다는 생각 뒤집게 만든 드라마, 곰퍼츠 평점 ★★★★★

    윌 곰퍼츠는 영국 BBC의 예술 편집인이며 예술 리뷰를 맛깔나게 쓰는 작가로 이름 높다. 국내에도 그의 책 ‘발칙한 현대미술사’가 번역 소개됐다. 에밀리 왓슨과 자레드 해리스가 연기 호흡을 맞추고 영국 스카이 어틀랜틱과 미국 HBO가 합작해 영국에서 3회까지 방영된 미니 시리즈 ‘체르노빌’ 리뷰를 별 다섯의 만점 평점과 함께 4일(현지시간) 실었다. 약간만 변형해 전문을 옮긴다.이 드라마가 많은 생각을 불러일으키게 한다고 말하는 것은 우사인 볼트를 세상에서 가장 빠른 달림이라고 묘사하는 것이나 북극해 얼음 밑의 물이 아주 차갑다고 하는 것과 비슷한 일이 될 것이다. 그저 생각에 잠기거나 하는 것이 아니라 아예 잠이 싹 달아나게 만든다. 1986년 4월 26일 오전 1시 15분 옛소련 우크라이나의 원자력발전소에서의 폭발 사고로 시작하는 이 핵재앙이 한 시간 분량의 드라마로 다섯 편에 걸쳐 손에 잡힐 듯이 그려진다. 3편이 끝날 때까지 난 조금 더 가벼운 것, 예를 들어 아마도 영화 ‘타워링’을 다시 보는 일이나 드라마 ‘루터’의 복사판 같은 것을 갈망하고 있었다. 실제로는 어느 쪽이든 현실이 아니었다. 왜냐하면 우리의 핵경쟁 시대에 움크리고 있던 위험들의 실체를 이곳에서도 두려움에 떨게 하는 것처럼 부검하듯 소름끼치게 돌아보고 있어서다. 당시 전세계 정부들이 자신들의 핵발전 계획을 보장받기 위해 (지금은 버려진) 신도시 프립얏에서 그날 밤 벌어진 일들의 끔찍한 참상을 축소하려 했다는 소문이 사실이라면 이 시리즈는 여러분이 왜 그래야 했는지 이해하게 만든다. 1편의 첫 장면은 참사 2년 뒤 물리학자 발레리 레가소프(해리스 분)의 작고 허름한 아파트에서 시작한다. 새벽 1시 10분이다. 사고 원인을 조사하는 위원회를 이끄는 이 남자는 부엌 식탁에 앉아 카세트 녹음기를 돌려 들으며 체르노빌 4번 원자로가 안전 검사를 마친 뒤 폭발하기 전과 과정, 후에 일어난 일들에 대해 자신이 알았던 모든 구체적인 사항들이 맞는지 확인한다. 음울하며 음산하다. 길 건너 자동차 안에서는 KGB 간부들이 침묵 속에 지켜보고 있어 시청자들은 사악한 위협을 감지할 수 있다. 당시는 그야말로 세상 사람들은 미소 짓는 법을 잊었다. 암담하다. 그 뒤로도 나빠지기만 했다.24개월 전의 한 시간 전으로 되감으면 프립얏의 또다른 아파트다. 새 신부 류드밀라 이그나텐코(제시 버클리 분)가 잠든 신랑 바실리 이그나텐코(애덤 나가이티스)를을 사랑스럽게 바라본다. 창 쪽으로 걸어가는 도중 건물을 뒤흔드는 폭발이 일어났고 남편은 잠에서 깨어난다. 소방관인 남편은 걱정할 일 없다며 유니폼을 챙겨 입고 뛰쳐나가 현장에 가장 먼저 도착한다. 그 뒤 관료주의가 참상을 은폐했으며 살갗이 녹아내릴 정도로 방사능 오염이 심각했으며, 재앙의 규모를 그나마 적게 만들려고 현명하던 그렇지 않았던 간에 열심이었던 사람들의 희생이 없었더라면 이 엄청난 비극은 훨씬 큰 재앙이 됐을 것이라는 얘기가 이어진다. 무슨 일이 벌어졌는지 안다는 것은 때때로 (드라마를) 시청하기 어렵게 만든다. 파자마 차림의 어린이 등 온마을 사람들이 다리 위에서 방사능 재가 머리 위에 떨어지는데도 불구경을 하는 장면을 지켜보는 일은 무시무시했다. 식상할 수도 있는 일이었다. 그러나 제작진은 압력솥 속처럼 연출해냈고 장면 전환의 페이스를 잘 조절했고 연기도 완벽(러시아 엑센트의 가짜 냄새가 전혀 없었다)해 드라마로 만들어진 넌픽션 가운데 독보적이고 중요한 작품이란 평가를 들을 만했다. 스텔란 스카스가르드가 연기한 소비에트의회 부의장인 보리스 슈체르비나는 처음에는 무지하고 자기만족에 빠져 당 노선만 좇는 고집불통의 베테랑 정치인이었으나 현장을 찾아 레가소프의 냉정한 평가를 듣고 끔찍하지만 정확하다는 것을 알게 된다. 왓슨이 연기한 벨라루스 핵물리학자 울랴나 코미육은 민스크 연구실에서 어떤 일이 벌어졌는지 알기 위해 안간힘을 쓴다. (초대받지 않았는데도) 현장을 방문하고 레가소프에게 (검열을 거치지 않은) 조언을 청하고 사고 원인을 정확히 파악하는 것이 이런 비극을 다시 일어나지 않게 하는 첩경이란 생각으로 진실에 접근한다. 세 배우들(스카스가르드, 해리스, 왓슨)은 기억에 남을 연기를 펼쳤고 1980년대 소련 시절의 감정을 제대로 살려냈다. 요한 렝크의 뛰어난 연출은 무채색의 세계를 제대로 그려냈다. 드라마를 보기 시작했을 때 다 아는 얘기라고 생각했다. 지금은 그렇지 않다는 것을 안다. 크레이그 마진의 각본은 팽팽하거나 적확하지는 않다. 대신 그는 시청자들을 그곳으로 데려가 잡아당기고 달아날 여지를 주지 않는다. 즐겁게 만들거나 흥분시키지 않지만 여러분을 느끼게 하고 생각하게 만든다. 어떻게 했어야 하는지 생각하게 한다. 어떤 민족주의 정부 가운데 하나가 비용을 줄이고 지름길을 택하려고 원자로를 운영한다면 어떤 일이 벌어질지 생각하게 만든다. 그리고 이 커다란 시리즈 속에 하나의 작은 아이러니가 자리하고 있다. 체르노빌 원자력발전소를 이 시리즈에서처럼 화려하게 관리하고 업그레이드하는 데 들어간 시간과 어려움, 돈과 맞먹는 정도로는 그걸 해낼 수 없다는 것이다. 임병선 평화연구소 사무국장 bsnim@seoul.co.kr
  • ‘사랑에 대한 모든 것’ 루게릭병 스티븐 호킹, 기적같은 사랑 [종합]

    ‘사랑에 대한 모든 것’ 루게릭병 스티븐 호킹, 기적같은 사랑 [종합]

    영화 ‘사랑에 대한 모든 것’이 전파를 타며 스티븐 호킹에 대한 관심도 커지고 있다. 28일 오후 1시5분부터 EBS에서는 물리학자 스티븐 호킹의 인생이야기를 다룬 영화 ‘사랑에 대한 모든 것’을 방영했다. 2014년 12월 개봉한 이 영화는 제임스 마쉬 감독이 메가폰을 잡았고 에디 레드메인(스티븐 호킹), 펠리시티 존스(제인 호킹), 해리 로이드, 데이빗 듈리스, 찰리 콕스, 에밀리 왓슨 등이 출연했다. 이 영화는 세상을 바꾼 천재 과학자 ‘스티븐 호킹’과 그에게 기적과도 같은 사랑을 선사한 여인 ‘제인 호킹’의 이야기를 담았다. 천재 과학자 스티븐 호킹은 우연히 신년파티에서 매력적인 여인 제인 와일드를 처음 마주한다. 두 사람은 첫 만남에서 서로에게 빠져들고 사랑을 키워나간다. 하지만 스티븐 호킹이 루게릭 병이라는 시한부 선고를 받게 되고, 그는 모든 것을 포기하려 하지만 여인 제인 와일드는 그의 삶을 지킨다. 두 사람은 운명 같은 사랑과 예기치 않게 찾아온 절망의 순간에도 서로에 대한 사랑과 희망으로 다시 일어선다. 한편 1942년생인 호킹은 루게릭병을 앓으면서도 블랙홀과 관련한 우주론과 양자 중력연구에 기여했으며, 뉴턴과 아인슈타인의 계보를 잇는 물리학자로 불린다. 1959년 17살의 나이로 옥스퍼드대에 입학한 그는 21살에 전신 근육이 서서히 마비되는 근위축성측삭경화증(ALS),이른바 ‘루게릭병’ 진단을 받았다. 의사들은 그가 불과 몇 년밖에 살지 못할 것이라고 예상했지만, 호킹은 휠체어에 의지한 채 컴퓨터 음성 재생 장치 등의 도움을 받아 연구활동을 이어왔다. 루게릭병은 운동신경세포만 선택적으로 사멸하는 질환이며 사지근력약화, 근육위축 구음장애, 연하장애, 호흡장애 등의 증상을 보인다. 루게릭병은 손, 팔 등에 힘이 없어지는 것을 시작으로 나중에는 몸의 어떤 근육도 움직일 수 없고, 결국 호흡까지 할 수 없게 되어 사망하게 되며, 아직까지 정확한 원인을 찾을 수 없어 그 치료 또한 불가능한 것으로 알려져 있다. 또 임상 증상이 나타나기 전에는 조기 진단, 예방법도 없다. 실제로 국내 환자가 증상 발생 후 병원을 방문하기까지 걸리는 기간은 평균 8.1개월이었으며, 확진까지 걸리는 기간은 평균 14.7개월인 것으로 나타났다. 스티븐 호킹 박사는 대학재학 시절에 만난 첫 부인 제인 사이에 3자녀가 있으며 1990년 제인과 이혼하고 자신을 돌보는 간호사였던 일레인과 재혼했다. 이보희 기자 boh2@seoul.co.kr
  • 이 장치 일찍 나왔다면… 호킹 박사의 영국식 억양도 들었을 텐데

    이 장치 일찍 나왔다면… 호킹 박사의 영국식 억양도 들었을 텐데

    뇌에 전극 이식해 단어·문자로 재구성 억양 변화 못 시키는 기존 장치와 달리 발성기관 움직임 관련 뇌 신호까지 추출 언어의 리듬·성별·정체성까지 조절 가능지난해 3월 타계한 세계적인 물리학자 스티븐 호킹은 1985년 급성 폐렴으로 사경을 헤매다가 기관지 절개수술을 받고 겨우 살아났다. 대신 웃음소리를 제외한 자신의 목소리를 잃고 컴퓨터 음성합성기를 통한 목소리를 갖게 됐다. 호킹 박사처럼 루게릭병이나 뇌졸중, 외상성 뇌손상, 파킨슨병, 다발성 경화증 같은 퇴행성 신경질환을 앓는 사람들은 말을 할 수 없게 되는 경우가 많아 언어전환 장치를 사용하곤 한다. 이 장치는 눈이나 미세한 몸짓으로 컴퓨터 커서를 작동시키거나 화면의 글자를 선택해 말을 하거나 글을 쓸 수 있게 해 준다. 일반인이 분당 100~150단어를 말하는 것에 비해 분당 10단어 정도밖에 표현할 수 없어서 대화에 빠르게 끼어들지도 못하고 언어의 톤이나 억양을 변화시킬 수도 없다.그러나 최근 뇌과학의 발달로 뇌신경 손상으로 인해 말을 하거나 글을 쓸 수 없는 환자들이 머릿속에서 말하고자 하는 내용을 밖으로 끄집어낼 수 있는 방법들이 속속 연구되고 있다. 지난 1월 미국 컬럼비아대, 호프스트라 노스웰 의대 공동연구팀은 뇌 속에 전극을 이식해 얻은 신호를 신경망 컴퓨터를 이용해 단어와 문자로 재구성하는 데 성공하고 생물학 분야 출판 전 논문공개 사이트인 ‘바이오아카이브’(bioRxi)에 발표하기도 했다. 이번에는 미국 캘리포니아 샌프란시스코대(UCSF) 신경외과, 웨일신경과학연구소, 캘리포니아 버클리대(UC버클리)·UCSF 조인트생명공학프로그램 공동연구팀이 뇌·컴퓨터 인터페이스(BCI) 기술을 활용해 머릿속에서 생각하는 것을 언어로 변환시킬 수 있는 해독기술을 개발하고 세계적인 과학저널 ‘네이처’ 25일자에 발표했다. 연구팀은 뇌 부위에 칩을 심어 언어 관련 뇌파만 추출해 언어로 전환하는 기존 방식을 넘어 턱과 후두, 입술, 혀 등 발성기관들의 움직임과 관련된 뇌 신호까지 더해 음성이나 글로 전환시키는 방법을 찾아낸 것이다. 연구팀은 우선 신경외과 수술을 받아 뇌에 전극을 이식했지만 말하는 데 문제가 없는 20~40대 성인남녀 5명에게 ‘잠자는 숲속의 공주’, ‘개구리왕자’, ‘이상한나라의 앨리스’ 같은 책에 나오는 문장들 450~750개씩을 또박또박 읽도록 하면서 발성 기관과 언어 관련 부위 뇌파를 측정했다. 그다음 이들에게 문장을 말할 때 소리를 내지 않고 입만 뻥긋거리면서 읽도록 하거나 눈으로 읽도록 한 뒤 발생하는 뇌파도 측정했다. 이렇게 얻은 데이터를 신경망 기계학습 알고리즘으로 분석해 프로그래밍한 다음 실험 참가자들에게 단어나 짧은 문장을 생각하도록 해 컴퓨터나 인공음성 장치로 출력된 것과의 일치도를 살펴봤다. 그 결과 쉬운 단어나 문장의 경우는 69%를 정확하게 인식하고 기록하거나 표현한다는 사실을 확인했다. 복잡한 단어나 문장에 대한 표현 정확도는 47%로 떨어졌지만 언어의 리듬과 억양, 말하는 사람의 성별과 정체성까지 조절이 가능했다. 연구를 이끈 에드워드 창 UCSF대 신경외과 교수는 “BMI 기술을 이용해 팔과 다리의 운동능력을 상실한 사람을 대상으로 생각대로 사지를 움직일 수 있는 방법들이 많이 연구됐다”며 “실제 임상 적용을 위해서 추가 연구가 필요하겠지만 신경과학과 언어학, 기계학습의 전문지식을 활용한 BCI 기술을 통해 후천적으로 언어를 잃었거나 선천적으로 언어장애를 가진 사람들 모두 인공 성대를 사용해 자신의 생각을 자유롭게 말하고 표현할 수 있는 날이 곧 찾아올 것”이라고 설명했다. 유용하 기자 edmondy@seoul.co.kr
  • [아하! 우주] 태양에는 플라스마가 비처럼 내린다…지구 수십 배 규모

    [아하! 우주] 태양에는 플라스마가 비처럼 내린다…지구 수십 배 규모

    우주전문 사이트 스페이스닷컴이 ‘금주의 놀라운 우주사진’으로 선정한 태양의 플라스마 사진이 우주 마니아들의 관심을 끌고 있다. 지구 수십 배 규모의 거대한 태양 자기장 고리를 타고 용솟음치는 플라스마가 마치 비처럼 태양 표면으로 쏟아지는 광경은 천체 사진 중 가장 압도적인 장면으로 선정되기에 모자람이 없다. 자기장 고리를 타고 플라스마가 팽창할 때 태양 외층에서 만들어지는 플라스마 비는 열원에서 멀어지면 냉각되어 중력에 의해 다시 태양 표면 쪽으로 내려간다. 이러한 플라스마의 움직임이 태양 대기인 코로나에서 만들어내는 크고 밝은 불기둥을 태양홍염(太陽紅焰) 또는 프로미넌스(prominence)라고 한다. 코로나가 플라스마라는 극도로 뜨거운 이온 가스로 구성되어 있는 반면, 태양홍염은 채층의 구성과 비슷한 상대적으로 훨씬 차가운 플라스마로 이루어져 있다. 태양홍염은 하루 정도에 구성되며, 코로나 내부에서 몇 주간 지속된다. 천문학자들은 이 ‘플라스마 비’가 태양 표면보다 태양 코로나가 수백 배나 더 뜨거운 이유를 알려줄지도 모른다는 생각을 하고 있다. 미 항공우주국(NASA)의 설명에 따르면, 최근 관측에서 이전에는 간과되었던 작은 자기장 고리에서 내리는 코로나 비가 발견되었다. 이 비는 태양의 외부 대기(코로나)에서 태양 표면으로 떨어지는 뜨거운 플라스마 방울로 구성된 것이다. NASA의 태양활동관측위성인 SDO(Solar Dynamics Observatory)에 장착된 고해상도 망원경을 사용하여 수집된 이 새로운 데이터는 코로나 비가 지구상의 비와 비슷한 움직임을 보여주는 것으로 나타났다. 물론 지구상의 비와는 달리 태양의 플라스마 비는 온도가 수백만 도에 달한다. 또한 하전된 가스인 플라스마는 지구상에 물처럼 한곳에 모이지 않는다. 그 대신 플라스마는 태양 표면으로부터 분출되는 자기장 선이나 고리를 따라 움직인다. 또한 연구진은 자기장 고리가 태양 표면에서 분출되는 부분에 플라스마가 과열되어 섭씨 100만 도를 넘는다는 사실을 발견했다. 이 극고온의 플라스마는 고리를 확장하고 고리의 최고점에 모인다. 그리고 냉각과 응축 과정을 거친 후 중력에 의해 코로나 비가 되어 태양 표면으로 떨어지는 것이다. 연구원들은 태양 표면으로부터 수백만 마일 규모로 뻗은 거대한 고리형 플라스마(helmet streamers로 불린다)에서 코로나 비의 흔적을 이전부터 찾고 있었다. 연구자들은 헬멧 스트리머가 플라스마와 입자의 흐름인 느린 태양풍의 근원 중 하나일 것으로 여겨 집중적인 관측과 연구를 해왔다. “이 고리들은 우리가 찾고 있던 것보다 훨씬 작았다”라고 밝힌 새 연구의 공동저자 스피로 안티오코스 NASA 고다드 우주비행센터의 물리학자는 “코로나의 가열은 우리가 생각했던 것보다 훨씬 좁게 국지화되어 있다”라고 덧붙였다. 따라서 ‘천체물리학저널 레터스’ 4월 5일자에 발표된 새 연구결과는 코로나의 가열 과정뿐 아니라 느린 태양풍의 원인을 밝히는 데 한 줄기 빛을 던져주고 있다. “루프에 코로나 비가 있는 경우, 그 바닥에서 10% 이하가 코로나 가열이 일어나는 부분”이라고 공동저자이자 미국 가톨릭 대학의 대학원생 에밀리 메이슨이 성명서를 통해 밝혔다.연구진은 높이 약 4만8000km의 플라스마 고리에서 내리는 코로나 비를 발견했다.이는 연구진이 찾던 헬멧 스트리머 높이의 2%에 불과한 것이었다. 메이슨은 “우리는 여전히 코로나가 가열되는 메커니즘을 정확히 알지 못하지만, 가열과정이 이 층에서 발생한다는 것만은 확신하고 있다”고 말했다. 새 연구결과는 또한 작은 자기장 고리와 느린 태양풍 사이의 가능한 상관관계를 확인하는 전과를 올렸다. 연구진이 생각해온 바와 같이 닫힌 자기장 고리뿐 아니라 열린 자기장 선에서도 코로나 비가 발생할 수 있다는 견론을 얻었다. 열린 자기장 선의 한쪽 끝은 공간으로 뻗어나가 플라스마가 태양풍 속으로 빠져나갈 수 있다는 것이다. 연구진은 NASA의 파커 태양탐사선을 이용해 더 작은 자기장 고리 구조를 연구할 계획이다. 파커 탐사선은 2018년에 발사되어 이전의 어떤 우주선보다 태양에 가까이 접근하고 있는 중으로, 지난 4월 4일 두 번째로 근일점을 통과했다. 이광식 칼럼니스트 joand999@naver.com 
  • [강남순의 낮꿈꾸기] 장애를 지닌, 그 한 사람의 권리를 기억하라

    [강남순의 낮꿈꾸기] 장애를 지닌, 그 한 사람의 권리를 기억하라

    우리는 동일한 시간과 장소에 있어도 동일한 것을 보지 않는다. 내게는 보이는 것을 다른 사람은 보지 못하기도 하고, 다른 사람이 보는 것을 내가 보지 못하는 경우도 있다. 함께 TV를 보아도, 남편이 부인에게 반말을, 부인은 남편에게 존대하는 드라마가 어떤 사람에게는 ‘들리지 않’지만, 다른 사람에게는 그것이 심한 문제로 들린다. 신년토론에 나온 대담자들이 100% ‘남성·비장애인·중년층·이성애자’ 인 것이 어떤 사람에게는 매우 ‘자연스러운’ 장면이지만, 다른 어떤 사람에게는 ‘부자연스러운’ 것이다. 한국사회의 중심부가 누구이며 어떤 사람들이 배제되어 있는가를 적나라하게 드러내는 ‘생략에 의한 차별’의 장면이기 때문이다. 이렇게 우리는 사람마다 각기 다른 ‘인식의 사각지대’를 지니고 있다.비장애인인 나에게 인식의 사각지대가 있음을 구체적으로 경험하게 된 것은, 장애를 지닌 나의 친구가 한국을 방문했을 때였다. 그녀는 나의 미국 유학시절에 가장 친하게 지내던 친구였다. 그런데 그녀는 박사과정 공부를 하던 중, 알 수 없는 바이러스로 인해 한쪽 다리를 완전히 절단했어야 했다. 투병 생활을 하면서 그녀는 우여곡절 끝에 박사학위를 마치고, 캐나다의 한 대학에서 교수로 일하게 되었고, 어느 해 한국에서 열린 국제회의에 참석하고서 나와 함께 서울과 강원도 여행을 하게 되었다. 의족을 하기도 하고, 목발을 짚고서 이동해야 하는 그녀와 함께 여러 곳을 다니면서 그동안 나의 눈에 전혀 보이지 않았던 것들이 비로소 내게 보이기 시작했다. 가파른 계단들을 올라가야 들어갈 수 있는 경사진 곳의 카페나 레스토랑들은 아무리 좋아 보여도 들어가지 않았다. 이전에 보이지 않던 계단들, 경사진 곳들, 엘리베이터가 없는 2~3층 건물들이 곳곳에 많다는 사실도 보이기 시작했다. 그런데 무엇보다도 나를 불편하게 느끼게 한 것은 내 친구와 함께 가는 곳마다 만나게 되는 사람들의 ‘시선’이었다. 백인의 몸을 지닌 그녀가 한쪽 다리가 없는 장애를 지닌 사람이라는 것이 어떤 이들에게는 ‘신기한 존재’로 바라보는 그 시선들 속에서 나의 친구는 단지 호기심과 측은지심의 대상일 뿐이었다. 그녀를 구성하는 수많은 결들은 보이지 않고 오로지 그녀의 ‘육체적 장애’라는 ‘이슈’로만 규정되는 것을 느낄 수 있었다. 장애를 가진 친구와 일주일을 함께하면서 나의 보기 방식에는 많은 변화가 생겼다. 삶의 다양한 정황들 속에서 장애를 지닌 사람이 경험하는 차별과 배제는 일일이 열거할 수 없다는 것, 동일한 자리에 있어도 장애를 지닌 사람과 아닌 사람이 경험하는 세계는 완전히 다르다는 것을 나는 이론만이 아니라 함께하는 삶을 통해서 배우게 되었다. ‘교차성’(intersectionality)이라는 개념은 장애를 지닌 사람의 문제가 얼마나 복잡한 것인가를 잘 보여준다. 예를 들어서 장애를 지닌 여성과 장애를 지닌 남성이 경험하는 세계는 겹치는 부분만이 아니라 전혀 상이한 부분들이 있다. 장애를 지닌 여성은 장애를 지닌 남성들이 경험하지 않는 경험을 하게 된다. 전통적인 가부장제적 사회에서 여성의 가치는 몸 그리고 그 몸의 기능과 연결되어 있다. 무엇보다도 남성중심적 사회에서는 육체적 미(성적 어필)가 여성에게 가장 중요한 것이라는 가치가 어릴 때부터 여자아이들에게 주입된다. 따라서 여성에게 가장 중요한 것은 창의력이 아니라, ‘육체적 외모와 그 성적 기능’이라는 여성에 대한 고정관념을 남성은 물론 여성 자신도 내면화한다. 이러한 사회에서, 장애를 지닌 여성은 그러한 두 역할, 즉 성적으로 어필하지 못하고, 더 나아가서 출산과 양육의 역할을 할 수 없다는 점에서 장애를 지닌 남성과 참으로 다른 경험을 하며 살게 된다. 이렇게 가사, 출산, 육아의 담당 능력 여부에 따라서 여성으로서의 ‘역할’을 다 하는 것이라는 생각이 여전히 사회적으로 고정되어 있을 경우, 돌봄노동의 전담자로서의 역할과 출산능력에 대한 기대에 맞지 않는 경우일 때, 장애를 지닌 여성들은 장애를 지닌 남성들의 경험과 다른 이중 삼중의 다층적 차별과 배제를 경험한다. 장애를 지닌 남성과 결혼하는 비장애 여성은 많지만, 거꾸로 비장애 남성이 장애를 지닌 여성과 결혼하여 그 여성에게 돌봄노동의 전담자로 살아가는 경우는 매우 드물다. 세계적으로 유명한 물리학자 스티븐 호킹을 아는 사람들은 많다. 그런데 그가 지닌 질병을 넘어서는 학문적 업적을 이루는 것이 가능했던 것은 그의 곁에서 그를 전적으로 돌보는 역할을 했던 배우자가 있었기에 가능했다. 21세부터 루게릭병으로 휠체어에서 살아야 했던 중증의 장애를 지닌 스티븐 호킹 곁에는 30여년 동안 돌봄노동의 전담자로 함께 했던 비장애 여성이었던 그의 배우자 제인 호킹이 곁에 있었다. 그녀가 호킹이 필요한 모든 돌봄노동의 전담자 역할을 하였기에 호킹은 글을 쓰고 이론을 발전시키는 일에만 몰두할 수 있었다. 그런데 만약 호킹이 여성이었다면 어떠한 상황이 되었을까. 4월 20일은 장애인의 날이다. 이 세계에 정신적 또는 육체적 장애를 지닌 사람들은 세계 인구의 10%라고 한다. 장애인의 날, 여성의 날, 어린이날 등 이러한 ‘특별한 날’에 호명되는 존재들은 누구인가. 그들의 공통점이 있다면, 그들은 한 사회에서 ‘주변부적 존재’라는 점이다. ‘장애인의 날’은 그저 매년 한번 치르는 연례행사가 아니라, 여전히 그들이 인간으로서의 평등성이 제도화되지 못했다는 것을 자각하는 성찰과 연대의 날이 되어야 한다. 한국 사회에서 인식의 사각지대에 놓인 이들 중 장애를 지닌 사람들이 경험하는 차별과 배제는 제도적 차원만이 아니라, 개인적 차원에서도 심각하다. 장애를 지닌 사람들은 ‘장애인’이라는 표지만을 지닐 뿐, 한 ‘인간’임을 보지 않는 사실 자체가 심각한 문제이다. ‘장애인’은 ‘장애를 지닌 인간’일 뿐이다. 즉 개별인 ‘인간’으로서의 독특성과 유일성을 지닌 존재라는 것, 따라서 다른 사람들에게 적용하는 젠더, 나이, 성적 지향, 경제적 계층 등의 요소들이 어떻게 작동되고 교차하는가를 복합적으로 조명해야 한다.장애차별(ableism)이란 문자적으로 하면 육체적 또는 정신적 장애 여부에 따른 차별을 의미한다. 그 차별에는 눈에 보이는 제도적 차별도 있지만, 눈에 보이지 않는 그러나 강력한 영향을 미치는 차별도 있다. 장애가 있는 사람은 없는 사람보다 ‘열등한 존재’로 간주된다. 그들에 대한 부정적인 고정관념은 다양하게 그들을 ‘열등한 존재’로서 고착시키는 역할을 한다. 이러한 의미에서 장애 차별은 다층적 차별과 편견을 작동시키는 가치관과 제도를 말한다. 인류 역사에서 장애차별의 대표적인 경우는 나치 독일에서이다. 1939년에서 1941년까지 독일에서 약 7만명의 장애인 여성, 남성, 아동들이 학살되었으며, 1945년까지 20만명의 장애인이 더 학살되었다. 장애인에 대한 노골적 학살의 역사인 것이다. 나는 ‘장애인’ (a disabled person)이 아니라, ‘장애를 지닌 사람’(a person with disability)이라는 표현을 의도적으로 쓴다. ‘장애인’이라는 표현은 ‘장애’만이 그 사람을 규정하는 고착된 장치가 되어 버린다. 그러나 장애를 지녔다고 해서 모두 동일한 경험을 하는 것이 아니다. ‘장애’만이 아니라, 한 인간으로서 그 사람의 젠더, 계층, 나이, 인종, 종교, 학력, 개성 등 다양한 요소들이 그 사람의 삶을 구성하고 있기 때문이다. ‘장애인’이라는 표지로만 한 사람을 고착시킬 때, 문제는 모든 장애인들이 마치 젠더, 계층, 나이, 인종, 학력 등에 상관없이 ‘단일한 집합체’라고 간주하게 되며, 결국 하나의 ‘이슈’로만 보게 한다. ‘페미니즘은 여성도 인간이라는 급진적 주장’이라는 모토는 장애 문제에도 동일하게 적용된다. ‘장애인의 날’에 호명되는 장애인은 종종 하나의 ‘이슈’로만 간주된다. 그러나 갖가지 특별행사보다 가장 중요한 것이 있다. 그들 한 사람 한 사람이 개별성을 지닌 ‘인간’임을 인식하는 것, 그래서 인간으로서의 자유로운 이동권, 평등권, 직업권, 교육권, 거주권 등이 보장되어야 하는 것은 그들에 대한 ‘시혜’나 ‘특별대우’가 아니라 한 인간으로서의 당연한 ‘권리’라는 인식이다. 장애인은 ‘이슈’가 아니라, 인간이다. 분명히 기억하자. 이 명료한 진실을. 글 텍사스 크리스천대, 브라이트 신학대학원 교수 그림 김혜주 서양화가
  • [이광식의 천문학+] 블랙홀 초간단 정리 - 상상 이상으로 기괴한 블랙홀

    [이광식의 천문학+] 블랙홀 초간단 정리 - 상상 이상으로 기괴한 블랙홀

    이론과 간접 증거로만 존재했던 블랙홀을 인류가 마침내 확인했습니다. 세계 8곳의 전파망원경을 연결하여 만든 지구 크기의 가상 망원경인 ‘사건지평선 망원경’(EHT·Event Horizon Telescope)으로 블랙홀을 포착함으로써 1세기 넘게 추적해온 블랙홀의 실체를 드디어 파악하기에 이른 것입니다. 이로써 1915년 발표된 알버트 아인슈타인의 일반 상대성 이론은 다시 한번 검증에 거뜬히 통과하는 쾌거를 이룩했습니다. 즉, 물체의 질량이 주변 시공간을 휘게 하며, 질량이 클수록 시공간의 곡률은 더욱 큰 곡률을 갖게 된다는 내용입니다. 천문학 최대의 화두인 블랙홀이란 과연 무엇일가요? 초간단 정리해보겠습니다. 상상 속에서 태어난 ‘검은 별’(Dark stars) 블랙홀은 우주에서 가장 기이하고도 환상적인 천체라 할 수 있습니다. 물질밀도가 극도로 높은 나머지 빛마저도 빠져나갈 수 없는 엄청난 중력을 가진 존재입니다. 가까이 접근하는 모든 물체를 가리지 않고 게걸스럽게 집어삼키는 중력의 감옥, 블랙홀. 모든 연령층, 모든 직업군을 아우르면서 블랙홀에 대해 크나큰 관심을 불러일으키고 상상력을 자극하는 것은 대체 무엇 때문일까요? 이 괴이쩍은 존재는 최초로 인간의 상상 속에서 태어났습니다. 1783년, 천문학에 관심이 많던 영국의 지질학자 존 미첼이 밤하늘의 별을 보면서 엉뚱한 생각을 합니다. 뉴턴의 중력 법칙과 빛의 입자설을 결합하여, '별이 극도로 무거우면 중력이 너무나 강한 나머지 빛마저도 탈출할 수 없게 되어 빛나지 않는 검은 별이 될 것이다' 이것이 블랙홀 개념의 첫 씨앗이었습니다. 미첼은 이런 생각을 쓴 편지를 왕립협회로 보냈습니다. '만약 태양과 같은 밀도를 가진 어떤 구체의 반지름이 태양의 500분의 1로 줄어든다면, 무한한 높이에서 그 구체로 낙하하는 물체는 표면에서 빛의 속도보다 빠른 속도를 얻게 될 것이다. 따라서 빛이 다른 물체들과 마찬가지로 관성량에 비례하는 인력을 받게 된다면, 그러한 구체에서 방출되는 모든 빛은 구체의 자체 중력으로 인해 구체로 되돌아가게 될 것이다' 그러나 당시 과학자들은 이론적인 것일 뿐, 그런 별이 실재하지는 않을 거라 생각하고 무시했습니다. 이러한 ‘검은 별’ 개념은 19세기 이전까지도 거의 무시되었는데, 그때가지 빛의 파동설이 우세했기 때문에 질량이 없는 파동인 빛이 중력의 영향을 받을 것이라고는 생각하기 힘들었기 때문입니다. 블랙홀 등장, 백조자리 X-1 그로부터 130년이 훌쩍 지난 1916년, 아인슈타인이 우주를 기술하는 뉴턴 역학을 대체하여 시간과 공간이 하나로 얽혀 있음을 보인 일반 상대성 이론을 발표한 직후, 검은 별 개념은 새로운 활력을 얻어 재등장했습니다. 일반 상대성 이론은 중력을 구부러진 시공간으로 간주하며, 질량을 가진 천체는 주변 시공간을 휘게 만든다는 이론입니다. 독일의 카를 슈바르츠실트가 아인슈타인의 중력장 방정식을 별에 적용해서 방정식의 해를 구했습니다. 그 결과, 별이 일정한 반지름 이하로 압축되면 빛마저 탈출할 수 없는 강한 중력이 생기게 되고, 그 중심에는 모든 물리법칙이 통하지 않는 특이점이 나타난다는 것을 알았습니다. 이것을 '슈바르츠실트 반지름'이라고 부릅니다. 이는 어떤 물체가 블랙홀이 되려면 얼마만한 반지름까지 압축되어야 하는가를 나타내는 반지름 한계치입니다. 이에 대해 아인슈타인은 “슈바르츠실트 반지름은 수학적 해석일 뿐, 실재하지 않는다는 것을 내 연구는 보여준다”면서 인정하지 않았습니다. 그러나 그 뒤 핵물리학이 발전하여 충분한 질량을 지닌 천체가 자체 중력으로 붕괴한다면 블랙홀이 될 수 있다는 예측을 내놓았고, 이 예측은 결국 강력한 망원경으로 무장한 천문학자들에 의해 관측으로 입증되었습니다. 1963년 미국 팔로마산 천문대는 심우주에서 유독 밝게 빛나는 천체를 발견했는데, 그것이 검은 별의 에너지로 형성된 퀘이사임을 확인했습니다. 오로지 상상 속에서만 존재하던 검은 별이 2세기 만에 마침내 실마리를 드러낸 것입니다. 사실 이전에는 ‘블랙홀’이란 이름조차 없었습니다. 대신 ‘검은 별’, ‘얼어붙은 별’, ‘붕괴한 별’ 등 이상한 이름으로 불려왔죠. ‘블랙홀’이란 용어를 최초로 쓴 사람은 미국 물리학자 존 휠러로, 1967년에야 처음으로 일반에 소개되었으며, 블랙홀의 실체가 발견된 것은 1971년이었습니다. 그 존재가 예측된 지 거의 200년이 지나서야 이름을 얻고 실체가 발견된 셈입니다. 1971년 미 항공우주국(NASA)의 X-선 관측위성 우후루는 블랙홀 후보로 백조자리 X-1을 발견했습니다. 강력한 X-선을 방출하는 이것이 과연 블랙홀인가를 놓고 이론이 분분했는데, 급기야는 과학자들 사이에 내기가 붙었습니다. 1974년 스티븐 호킹과 킵 손 사이에 벌어진 내기에서 호킹은 백조자리 X-1이 블랙홀이 아니라는 데에 걸었고, 킵 손 교수는 그 반대에 걸었습니다. 지는 쪽이 성인잡지 ‘펜트하우스’ 1년 정기 구독권을 주기로 했죠. 1990년 관측자료에서 특이점의 존재가 입증되자 호킹은 내기에 졌음을 인정하고 잡지 구독권을 킵 손에게 보냈는데, 그 일로 킵 손 부인에게 엄청 원성을 샀다고 합니다. 2005년에는 우리은하 중심에서도 블랙홀이 발견되었는데, 최신 관측자료에 의하면 전파원 궁수자리 A*가 태양 질량의 430만 배인 초대질량 블랙홀임이 밝혀졌습니다. 영화 ‘인터스텔라’ 제작에 자문역으로 참여하기도 했던 킵 손은 나중에 블랙홀 존재를 결정적으로 입증한 LIGO(레이저 간섭계 중력파 관측소)의 블랙홀 중력파 검출로 노벨 물리학상을 받았습니다. 블랙홀 연구에 큰 업적을 남긴 호킹은 노벨상을 받지 못해 안타깝게도 킵 손에게 두 번이나 패배한 형국이 되었습니다.블랙홀 존재, 어떻게 알 수 있나? 블랙홀은 엄청난 질량을 갖고 있지만 덩치는 아주 작습니다. 그만큼 물질밀도가 극도로 높다는 뜻이죠. 예컨대 태양이 블랙홀이 되려면 얼마나 밀도가 높아야 할까요? 슈바르츠실트 반지름의 해 공식으로 구해보면, 70만㎞인 반지름이 3㎞까지 축소되어야 하며, 밀도는 자그마치 1cm^3에 200억 톤의 질량이 됩니다. 각설탕 하나 크기가 그만한 무게가 나간다는 얘기죠. 지구가 블랙홀이 되려면 반지름이 우리 손톱 정도인 0.9cm로 작아져야 합니다. 이처럼 초고밀도의 블랙홀은 중력이 극강이어서 어떤 것도 블랙홀을 탈출할 수가 없습니다. 지구 탈출속도는 초속 11.2㎞이며, 빛의 초속은 30만㎞입니다. 블랙홀의 중력이 너무나 강해 탈출속도가 30만㎞를 넘기 때문에 빛도 여기서 탈출할 수가 없는 거죠. 따라서 우리는 블랙홀을 볼 수가 없습니다. 그런데 과학자들은 블랙홀의 존재를 확인할 수가 있습니다. 어떻게? 블랙홀이 주변의 가스와 먼지를 강력히 빨아들일 때 방출하는 X-선 복사로 그 존재를 탐색할 수 있습니다. 우리은하 중심부에 있는 초대질량 블랙홀은 두터운 먼지와 가스로 뒤덮여 있어 X-선 방출을 가로막고 있습니다. 물질이 블랙홀로 빨려들어갈 때 블랙홀의 사건 지평선 입구에서 안으로 들어가지 않고 스쳐지나는 경우도 있습니다. 블랙홀이 직접 보이지는 않지만, 물질이 함입될 때 발생하는 강력한 제트 분출은 아주 먼 거리에서도 볼 있습니다. 1958년에 미국 물리학자 데이비드 핀켈스타인이 블랙홀의 ‘사건 지평선’ 개념을 처음으로 선보였습니다. 사건 지평선이란 외부에서는 물질이나 빛이 자유롭게 안쪽으로 들어갈 수 있지만, 내부에서는 블랙홀의 중력에 대한 탈출속도가 빛의 속도보다 커서 원래의 곳으로 되돌아갈 수 없는 경계를 말합니다. 말하자면 블랙홀의 일방통행 구간의 시작점이죠. 어떤 물체가 사건의 지평선을 넘어갈 경우, 그 물체에게는 파멸적 영향이 가해지겠지만, 바깥 관찰자에게는 속도가 점점 느려져 그 경계에 영원히 닿지 않는 것처럼 보입니다. 블랙홀은 특이점과 안팎의 사건 지평선으로 구성됩니다. 특이점이란 블랙홀 중심에 중력의 고유 세기가 무한대로 발산하는 시공간의 영역으로, 여기서는 물리법칙이 성립되지 않습니다. 즉, 사건의 인과적 관계가 보장되지 않는다는 뜻이죠. 이 특이점을 둘러싸고 있는 것이 안팎의 사건 지평선으로, 바깥 사건 지평선은 물질이 탈출이 가능한 경계이지만, 안쪽의 사건 지평선은 어떤 물질이라도 탈출이 불가능한 경계입니다. 블랙홀, 화이트홀, 웜홀 1964년, 이론 물리학자 존 휠러가 최초로 ‘블랙홀’이라는 단어를 대중에게 선보인 데 이어 1965년에는 러시아의 이론 천체물리학자 이고르 노비코프가 블랙홀의 반대 개념인 ‘화이트홀’이라는 용어를 만들었습니다. 만약 블랙홀이 모든 것을 집어삼킨다면 언젠가 우주공간으로 토해낼 수 있는 구멍도 필요하지 않겠는가 하는 것이 이 화이트홀 가설의 근거입니다. 말하자면, 블랙홀은 입구가 되고 화이트홀은 출구가 되는 셈이죠. 이렇게 블랙홀과 화이트홀을 연결하는 우주 시공간의 구멍을 웜홀(벌레구멍)이라 합니다. 말하자면 두 시공간을 잇는 좁은 통로로, 우주의 지름길이라 할 수 있습니다. 웜홀을 지나 성간여행이나 은하 간 여행을 할 때, 훨씬 짧은 시간 안에 우주의 한쪽에서 다른 쪽으로 도달할 수 있다는 거죠. 웜홀은 벌레가 사과 표면의 한쪽에서 다른 쪽으로 이동할 때 이미 파먹은 구멍으로 가면 더 빨리 간다는 점에 착안하여 이름지어진 거죠. 하지만 화이트홀의 존재가 증명된 바 없으며, 블랙홀의 기조력 때문에 진입하는 모든 물체가 파괴되어서 웜홀을 통한 여행은 수학적으로만 가능할 뿐입니다. 그래서 스티븐 호킹도 웜홀 여행이라면 사양하고 싶다고 말한 적이 있습니다. 어쨌든 블랙홀의 현관 안으로 들어갔던 물질이 다른 우주의 시공간으로 다시 나타난다는 아이디어는 그다지 놀랄 만한 것은 아니지만, 여기에서 무수한 공상과학 스토리가 탄생했습니다. ‘닥터 후(Doctor Who)’, ‘스타게이트(Stargate)’, ‘프린지(Fringe)’ 등 끝이 없을 정도죠. 이런 얘기들은 하나같이 등장인물들이 우리 우주와 다른 우주 또는 평행우주를 여행한다는 줄거리로 되어 있습니다. 그러한 우주는 수학적으로 성립되는 가공일 뿐으로, 그 존재에 대한 증거는 아직까지 하나도 밝혀진 것이 없습니다. ​그러나 어떤 의미에서 시간여행이 현실적으로 불가능하다는 얘기는 아닙니다. 만약 우리가 엄청난 속도로 여행하거나, 또는 블랙홀 안으로 떨어진다면 외부 관측자의 눈에는 시간의 흐름이 아주 느리게 보일 것입니다. 이것을 중력적 시간지연이라 합니다. 이 효과에 의해 블랙홀로 낙하하는 물체는 사건의 지평선에 가까워질수록 점점 느려지는 것처럼 보이고, 사건의 지평선에 닿기까지 걸리는 시간은 무한대가 됩니다. 즉 사건의 지평선에 닿는 것이 외부에서는 관찰될 수 없습니다. 외부의 고정된 관찰자가 보면 이 물체의 모든 과정은 느려지는 것처럼 보이기 때문에, 물체에서 방출되는 빛도 점점 파장이 길어지고 어두워져서 결국 보이지 않게 됩니다. 아인슈타인의 특수 상대성 이론에 따르면, 빠르게 운동하는 시계의 시간은 느리게 갑니다. 2014년 영화 ‘인터스텔라’는 블랙홀 근처에서 일어나는 이러한 현상을 보여주었죠. 우주 비행사 쿠퍼(매튜 맥커너히)가 시간여행을 할 수 있었던 것은 그 때문입니다. 블랙홀의 사건 지평선 안에는 실제로 어떤 것이 있을까란 문제는 여전히 뜨거운 논쟁거리가 되고 있습니다. 블랙홀 내부를 이해하기 위해 끈이론, 양자 중력이론, 고리 양자중력, 거품 양자 등등 현대 물리학의 거의 모든 이론들이 참여하고 있습니다. 이광식 칼럼니스트 joand999@naver.com 
  • [아하! 우주] 유레카! 블랙홀 마침내 사진으로 잡혔다!

    [아하! 우주] 유레카! 블랙홀 마침내 사진으로 잡혔다!

    블랙홀이 어둠 속에서 마침내 모습을 드러냈다. 그 존재가 예견된 지 1세기가 넘도록 모습을 드러내지 않고 있던 우주의 괴물 블랙홀이 역사상 최초로 인류의 시야에 잡혔다. 극한의 중력으로 빛마저 탈출할 수 없는 시공의 구멍은 이로써 그 기괴한 정체를 서서히 드러낼 것으로 보인다. “우리는 볼 수 없다고 생각하던 것을 보았다”고 미국 하버드 스미스소니언 천체물리학 센터의 셰퍼드 도엘레만 박사가 10일(현지시간) 워싱턴 DC의 내셔널프레스클럽에서 열린 기자회견에서 말했다. 도엘레만 박사는 역사적인 블랙홀 촬영에 성공한 사건지평선망원경(EHT·Event Horizon Telescope) 프로젝트를 총괄하고 있다. 이날 공개된 4개의 이미지는 M87 타원은하 중심에 숨어 있는 블랙홀의 윤곽을 잡아낸 것이다. 이어 “그 이미지는 자체만으로도 충분히 충격적이지만, 더 중요한 것은 후속 연구에서 더욱더 놀라운 결과들이 도출될 것이란 점”이라고 덧붙였다. 이번에 최초로 이미지를 잡아낸 블랙홀은 지구에서 5500만 광년 거리에 있는 처녀자리 은하단에 속한 M87이란 타원은하의 초대질량 블랙홀로, 태양 질량의 65억 배, 지름은 160억㎞에 달한다. EHT 프로젝트는 약 20년 동안 200여 명의 넘는 다국적 과학자들이 참여한 컨소시엄으로, 지난 수년간 미국 국립과학재단 및 전 세계의 많은 기관들로부터 기금을 지원받아왔다. 이 프로젝트의 이름, 사건지평선이란 블랙홀의 유명한 경계선을 일컫는 것이다. 이 선 안으로 떨어지면 블랙홀의 극한 중력에 붙잡혀 빛마저 빠져나올 수 없다는 반환 불가의 경계선이다. 이것에 사건 지평선이란 멋진 이름을 붙인 사람은 미국 물리학자 존 휠러로 알려져 있다. 사실 초기에는 ‘블랙홀’이란 이름조차 없었으며, 대신 ‘검은 별’, ‘얼어붙은 별’, ‘붕괴한 별’ 등 이상한 이름으로 불려왔다. '블랙홀'이란 용어를 최초로 쓴 사람 역시 존 휠러로, 1967년에야 처음으로 일반에 소개되었으며, 블랙홀의 실체가 발견된 것은 1971년이었다. ​ ​어쨌든 빛마저도 탈출할 수 없는 블랙홀은 우리가 눈으로 볼 수도 없고 내부를 촬영하는 것도 불가능하다. 그래서 EHT는 블랙홀의 어두운 실루엣을 추적하여 사건 수평선을 이미지화한다. 연구진은 EHT로 블랙홀의 그림자를 먼저 관찰하고, 슈퍼컴퓨터를 이용해 원본 데이터를 최종 영상으로 변환했다. 이후 독일 막스플랑크 전파천문학연구소 등에 위치한 슈퍼컴퓨터를 이용해 EHT의 원본 데이터를 역추적했다. 그 결과 연구진은 M87 블랙홀의 그림자가 약 400억㎞이며, 블랙홀의 크기(지름)는 그림자에 비해 약 40% 정도인 것으로 측정했다. 애리조나 대학의 천문학 부교수로 이 프로젝트에 참여하고 있는 댄 마로네는 스페이스닷컴과의 인터뷰에서 "우리는 잃어버린 광자(빛)를 찾아냈다"고 말했다. 이 프로젝트는 그 동안 두 개의 블랙홀, 즉 태양 질량의 약 65억 배인 M87 거대 블랙홀과 궁수자리 A*로 알려진 우리은하의 중심 블랙홀을 면밀히 조사했다. 우리은하 블랙홀 역시 ​​거대 질량이지만 M87의 블랙홀과 비교하면 간난아기에 불과한 430 만 배 태양 질량에 지나지 않는다. 이 두 대상은 모두 지구로부터의 엄청난 거리에 있다. 궁수자리 A*는 우리로부터 약 26,000광년 떨어져 있으며, M87은 5350만 광년 떨어져 있다. 궁수자리 A*의 사건지평선은 "너무나 작아 우리가 보기에는 달 표면에 놓인 오렌지를 보는 거나 뉴욕시에서 로스앤젤레스 가판대의 신문을 읽는 거나 비슷하다" 도엘레만은 비유한다. 따라서 지구상에 있는 어떤 망원경으로도 관측이 불가능하다는 얘기다. 여기서 지구 크기의 망원경 제작이라는 아이디어가 나타났다. EHT 연구진은 미국 애리조나, 스페인, 멕시코, 남극 대륙 등 세계 곳곳의 8개 전파망원경을 연결, 지구 규모의 가상 망원경을 구성해 2017년 4월 총 9일간 M87을 관측, 이런 성과를 냈다. 그렇다면 이 같은 최초의 블랙홀 이미지가 지닌 의미는 무엇일가? EHT 팀원들과 외부 과학자들은 이번 결과는 아인슈타인의 일반상대성이론을 궁극적으로 증명하는 것으로, 과학사에 한 획을 그은 사건이라는 데 의견 일치를 보고 있다. 마로네 박사는 1968년 12월 아폴로 8호 우주 비행사 빌 앤더스가 찍은 유명한 사진 '지구 해돋이'가 인류에게 우주 속에 떠 있는 연약한 지구의 모습을 보여줌으로써 환경운동에 박차를 가한 사례를 인용하면서, 블랙홀 이미지는 우주에서 우리 자신과 우리의 위치에 대해 생각하는 방식을 바꿀 수 있다고 강조한다. 이광식 칼럼니스트 joand999@naver.com
  • ‘진짜’ 블랙홀에 빠지다… 아인슈타인 상대성이론 완벽 증명

    ‘진짜’ 블랙홀에 빠지다… 아인슈타인 상대성이론 완벽 증명

    아인슈타인의 일반상대성이론이 발표된 지 104년, 블랙홀의 존재가 예측된 지 103년 만에 드디어 베일 뒤에 숨겨져 있던 블랙홀의 모습이 처음 공개됐다. 이번에 포착된 블랙홀은 지구에서 5500만 광년 떨어져 있는 처녀자리 은하단(團) 중심부에 존재하는 거대은하 M87 중심부에 있는 것으로 무게는 태양 질량의 65억배에 달하는 것으로 알려졌다. ‘이벤트 호라이즌 망원경’(EHT) 프로젝트 연구진은 전 세계 8개의 전파망원경을 하나로 묶은 가상의 전파망원경을 형성해 초대질량 블랙홀 관측에 성공했다고 10일 밝혔다. 2016년 중력파 검출 발표에 이어 3년이 지난 시점에 블랙홀이 실제로 확인됨에 따라 아인슈타인의 일반상대성이론으로 예측됐던 현상들을 모두 발견하게 된 셈이다. 이 때문에 과학자들은 “일반상대성이론의 궁극적 증명에 이르렀다”는 평가를 내리고 있다. 이날 블랙홀 포착 소식은 세계표준시(UT) 기준 10일 오후 1시(한국시간 10일 오후 10시)에 벨기에 브뤼셀에서 유럽연구이사회, 유럽남방천문대(ESO), 독일 막스플랑크 전파천문연구소 연구진이 나서고 덴마크 린그비, 칠레 산티아고, 중국 상하이, 일본 도쿄, 대만 타이베이, 미국 워싱턴DC의 각국 연구진들을 위성으로 연결해 동시 기자회견을 열고 연구 결과를 공개했다.인류 최초로 블랙홀 모습을 포착한 이번 연구에는 전 세계 200여명의 천문학자가 참여했으며 이 중에는 국내에서 활동하는 연구자 8명과 외국에서 활동하고 있는 한국인 과학자 2명이 포함됐다. 이번 연구 결과는 천체물리학 분야 국제학술지 ‘천체물리학 저널 레터스’ 4월 10일자 특별판에 6편의 논문으로 게재됐다. 영화 ‘인터스텔라’에서 묘사된 블랙홀을 비롯해 수많은 SF나 TV 과학다큐멘터리 등에서 지금까지 보여 준 블랙홀은 모두 수학적·물리학적으로 계산하고 추정해 그린 ‘상상도’라고 할 수 있다. 이번에 ‘진짜’ 블랙홀 모습을 포착해 낸 EHT는 미국 하와이에 있는 SMA, JCMT, 애리조나 SMT, 멕시코 푸에블라 LMT, 스페인 안달루시아 IRAM, 칠레 아타카마 ALMA, APEX, 남극 SPT 등 전 세계 8개의 전파망원경을 연결한 가상의 전파망원경이다. ‘초장거리 간섭계’라고도 불리는 EHT는 전파망원경 8개를 연결해 1.3㎜파 파장대에서 거대한 지구 규모의 가상의 망원경을 만든 것으로 프랑스 파리 카페에서 미국 뉴욕에 있는 신문의 글자를 읽을 수 있을 정도의 해상도를 갖고 있다. EHT는 블랙홀의 외부 경계면인 ‘이벤트 호라이즌’(사건의 지평선)을 관측해 왔으며 관측 데이터들은 미국 매사추세츠공과대(MIT)와 독일 막스플랑크 전파천문연구소에서 분석됐다. EHT가 5일간 관측해 얻는 데이터는 대략 4페타바이트(PB) 분량으로 MP3 음악이라고 가정할 경우 재생하는 데만 8000년이 걸릴 정도로 방대하다. 이번에 블랙홀 포착에 활용된 데이터는 2017년 4월 5~14일 열흘간 수집된 것이다. 이처럼 엄청난 블랙홀 빅데이터를 분석해 이번에 그 결과를 발표한 것이다. 당초 2017년에 첫 사진을 발표할 예정이었지만 남극에 있는 SPT의 데이터 전달 문제 때문에 지연되면서 2년이 늦춰지게 된 것으로 알려졌다. 사실 빛조차 빠져나갈 수 없어 ‘검은 구멍’이라는 이름을 가진 블랙홀 영상을 찍기란 쉽지 않은 일이다. 블랙홀의 강한 중력은 블랙홀 외곽부인 이벤트 호라이즌 바깥을 지나는 빛도 휘어지게 만든다. 이 때문에 블랙홀 뒤편에 있는 밝은 천체나 블랙홀로 빨려 들어가는 천체와 물질들이 내뿜는 빛이 왜곡되면서 블랙홀 주위를 휘감게 된다. 이렇게 휘어지고 왜곡된 빛들은 우리가 볼 수 없는 블랙홀을 비춰 블랙홀 윤곽이 드러나게 만든다. 이번 EHT가 찍은 것도 엄격하게 따지면 블랙홀의 모습이라기보다는 블랙홀의 윤곽, 일명 ‘블랙홀의 그림자’이다. 연구팀은 방대한 관측자료를 보정하고 영상화 작업을 거쳐 고리 형태의 구조와 중심부의 어두운 지역인 블랙홀의 그림자를 발견했다. EHT 프로젝트 총괄단장인 미국 하버드스미스소니언 천체물리센터 셰퍼드 도에레만 박사는 “시공간의 휘어짐, 초고온 가열 물질, 강한 자기장 등 물리적 요소를 포함시킨 컴퓨터 시뮬레이션과 관측 자료들이 놀랄 만큼 일치되는 것에 깜짝 놀랐다”며 “불과 한 세기 전까지만 해도 불가능하리라 여겼던 일을 이번에 수많은 과학자들의 협력을 통해 이뤄 냈다”고 말했다. 2016년 중력파 검출 발표 이후 이번 블랙홀 발견 소식은 과학자들은 물론 전 세계인들을 흥분에 휩싸이게 만든 과학사의 역사적 순간으로 기록됐다. 사실 ‘블랙홀’은 사회, 정치, 문화 등 과학 이외의 다양한 분야에서 많은 사람들이 흔히 사용하지만 블랙홀이 정확하게 어떤 형태이며 어떤 물리학적 의미를 갖는지에 대해서는 잘 알지 못한다. 블랙홀을 간단히 표현하면 표면 중력이 엄청나게 강한 천체이다. 블랙홀의 표면 중력은 너무 커 이를 벗어나기 위한 최소한의 속도인 ‘탈출 속도’ 크기가 광속보다 크다. 탈출 속도가 광속보다 크다는 이야기는 빛도 그 천체 밖으로 빠져나오기 어렵다는 말이다. 그래서 그 천체를 바라보면 어둡게 보이는 것이다. 중력법칙에 근거해 빛이 탈출할 수 없는 별에 대한 언급은 18세기 프랑스 수학자 피에르 시몽 라플라스가 처음 했다. 오늘날 이야기되고 있는 블랙홀은 1915년 아인슈타인이 일반상대성이론을 발표하고 이듬해 독일 천문학자 카를 슈바르츠실트가 상대성이론을 바탕으로 처음으로 예견했다. 슈바르츠실트의 예측에 따르면 블랙홀은 밀도와 중력이 무한대여서 모든 물질이 빨려 들어가는 ‘특이점’과 블랙홀 경계면이라고 할 수 있는 이벤트 호라이즌으로 구성돼 있다. 이후 “블랙홀은 생각만큼 까맣지 않다”는 말을 남기며 평생을 블랙홀 연구에 바친 영국의 물리학자 스티븐 호킹은 로저 펜로즈와 함께 ‘특이점 정리’에 대한 증명을 통해 우주 곳곳에 블랙홀이 존재할 가능성이 있다는 것을 보여 줬다. EHT 과학이사회 위원장 하이노 팔케 네덜란드 라드바우드대 교수는 “이벤트 호라이즌에서 빛이 블랙홀의 강력한 중력으로 휘어져 만들어진 그림자는 블랙홀이라는 매혹적인 천체에 대해 많은 것을 알려주고 있다”며 “이번 블랙홀 발견이 우주의 생성과 진화에 대해 더 많은 지식을 얻을 수 있는 계기가 될 것”이라고 설명했다. 유용하 기자 edmondy@seoul.co.kr
  • [남순건의 과학의 눈] 물리학자와 기후 변화

    [남순건의 과학의 눈] 물리학자와 기후 변화

    연일 계속되는 미세먼지 때문에 사람에게 가장 중요한 호흡조차 매우 불편한 상태가 되고 있다. 중국에서는 인정하고 있지 않으나 화석연료에 크게 의존하고 있는 중국 전력 에너지의 70%를 석탄이 담당하고 있다는 세계은행의 자료는 중국 미세먼지의 주범이 석탄임을 보여주고 있다. 우리나라에서도 석탄에 의한 발전 비율이 2017년 기준으로 50%를 넘었다. 무서울 정도로 엄청난 양의 오염물질과 미세먼지 그리고 이산화탄소가 이 글을 쓰기 위한 컴퓨터를 작동시키기 위해 배출되었다는 것에 두려움마저 느껴진다. 1952년 영국에서 ‘그레이트 스모그’라 불리는 사건이 있었다. 런던에서 닷새간 심각한 스모그가 발생해 1만명 이상이 사망한 사건이다. 현재 한국을 뒤덮는 초미세먼지가 중장기적으로 얼마나 큰 질병과 사망으로 이어질지는 세밀한 역학조사로 밝혀져야 하겠지만 감히 예측하건대 상상을 뛰어넘는 수준이 될 것이다. 그런데 눈에 보이고 직접 우리가 느끼는 미세먼지보다 더 심각한 문제가 있다. 아무리 깨끗하다고 하는 화석연료도 반드시 배출하게 되는 이산화탄소이다. 금성의 예에서도 알 수 있듯이 대기 중 이산화탄소 농도가 어느 수준을 넘어가면 태양 복사에너지는 지구에 갇혀 지구 온도를 높일 것이다. 파리협약에서 이야기한 섭씨 2도가 별것 아닌 것 같지만 평균 온도의 상승은 날짜별 온도 변화의 폭을 키우게 된다. 예를 들어 여름에 50도가 넘는 날과 겨울에 영하 40도를 밑도는 날이 며칠씩 지속된다면 전 세계 곳곳에서 사망자가 속출할 것이다. 추위와 더위는 에어컨과 난방시설로 견딜 수 있을지 모르지만 일단 온도 상승이 시작되면 태양빛을 반사하던 빙하들이 녹게 되고 온도 상승이 더욱 가속화될 것이다. 그리고 시베리아처럼 얼어 있던 땅에 가둬져 있던 메탄가스가 대기 중으로 방출되면서 온실효과는 더욱 커진다. 그렇게 되면 얼음 위에 살던 북극곰만 굶어 죽는 것이 아니라 급격한 기후변화에 적응 못한 농업이 영향을 받아 굶어 죽는 사람도 급증하게 될 것이다. 문제는 이런 변화가 가까운 장래에 갑자기 올 수도 있다는 것이다. 가속되고 있는 변화가 그래서 무서운 것이다. 많은 곳에서 이런 경종이 울리고 있음에도 불구하고 에너지 수요를 감당하기 위해 화석연료를 마구 연소하다 보니 심각한 미세먼지가 몰려오고 있는 것이다. 원자물리학 실험으로 노벨 물리학상을 받은 스티븐 추 박사는 미국 오바마 정부에서 에너지부 장관을 지내며 신재생 에너지 정책을 펼쳤다. 그런 그가 한국은 2060년까지도 신재생에너지를 이용해 에너지 수요의 50%를 생산하기도 어려울 것으로 예측한 바 있다. 그럼 어떻게 해야 할까. 에너지 사용량을 절반으로 줄이는 혁신적인 대안이 있을 수도 있지만 우리 생활에서 에너지 사용은 늘면 늘지, 줄지는 않을 것이다. 그렇다면 탄소 배출을 줄이면서 필요한 에너지를 어떻게 만들어 내야할지 답은 보인다. 어떻게 보면 삼척동자도 다 알 만한 사실인 데도 결말이 뻔해 보이고 나중에 크게 후회할 수밖에 없는 에너지 정책이 현재 진행 중이라 안타까운 심정이다. 화창한 봄날이어야 할 요즘 바깥은 미세먼지가 가득하다. 우리는 가슴 깊이 맑은 공기를 들이마시고 싶다. 이번 4월은 제발 숨 쉬기 어려운 잔인한 달이 아니었으면 한다.
  • “히틀러 광기가 내 삶을 파괴”…아인슈타인 자필편지 경매

    “히틀러 광기가 내 삶을 파괴”…아인슈타인 자필편지 경매

    인류 최고의 물리학자로 꼽히는 알베르트 아인슈타인(1879~1955)의 자필 편지가 경매에 나온다. 지난 25일(이하 현지시간) 미국 폭스뉴스 등 현지언론은 오는 28일 아인슈타인의 자필 편지 두장과 타이핑 편지 1장이 LA에서 경매될 예정이라고 보도했다. 이 편지는 지난 1920~1930년 대 작성된 것으로 히틀러와 반(反)유대주의에 대한 비판과 두려움, 자식 걱정 등 당시 아인슈타인이 느꼈던 감정이 오롯이 담겨있다. 이중 가장 오래된 편지는 지난 1921년 9월 6일 작성된 것으로 수신인은 자신이 가장 아꼈던 여동생 마야다. 편지에서 아인슈타인은 "뮌헨으로 갈 예정이었지만 생명에 위협을 느껴 그렇게 할 수 없었다"고 적었다. 독일 유대인으로 출생한 아인슈타인은 뮌헨에서 자랐으며 1920년 대 이곳은 반유대주의에 휩쓸렸다. 또 이 편지에는 자신의 발자취를 따랐던 공학자인 아들 한스가 이룬 성과에 대해서도 자세히 언급했다. 또다른 자필 편지는 지난 1934년 4월 17일 작성된 것으로 수신인은 아인슈타인의 첫번째 부인이자 두 아들의 엄마인 밀레바 마리치다. 아인슈타인은 조현병에 걸린 아들 에두아르트를 잘 돌봐달라는 부탁과 함께 수표를 보냈다고 편지에 적었다. 그러나 아인슈타인은 "히틀러의 광기 때문에 내 삶도 완전히 파괴돼 도움을 주는데 한계가 있다"고 적었다. 타자기로 작성된 세번째 편지는 1938년 6월 10일 방사능 치료 전문가인 모르스 렌즈 박사에게 보낸 것으로 그의 업적을 찬양했다. 경매 주관사인 네이트 샌더스 옥션 측은 "각각의 편지에는 히틀러에 대한 반감과 반유대주의 부상에 대한 우려, 또 개인적인 어려움이 토로되어 있다"면서 "총 4만 달러(약 4500만원) 이상에 경매될 것"이라고 밝혔다. 한편 아인슈타인은 반유대주의속에도 독일과 스위스를 오가며 생활하다 1933년 나치가 독일을 장악하자 미국으로 망명했다.  박종익 기자 pji@seoul.co.kr
  • [핵잼 사이언스] 광속으로 달리는 빛은 시간을 어떻게 느낄까?

    [핵잼 사이언스] 광속으로 달리는 빛은 시간을 어떻게 느낄까?

    빛은 시간을 어떻게 느낄까? 빛도 우리처럼 늙을까? 이에 대한 물리학자의 흥미로운 칼럼이 16일(현지시간) 우주전문 사이트 스페이스닷컴에 발표되었다. 아래의 기사는 해당 칼럼을 약간 손질하여 소개한 것이다. 움직이는 시계의 시간은 느리게 간다. 우주에서 더 빨리 움직일수록 시간은 더 느리게 간다. 이것은 아인슈타인의 특수 상대성 이론에서 밝힌 가장 놀라운 결과 중 하나이며, 시간과 공간의 기묘한 관계를 시각화하는 하나의 방법이다. 이 ‘시간 지연’ 의 효과는 보통 일상생활에서는 전혀 느낄 수 있는 것이 아니다. 실생활에서는 우리와 관련된 어떤 것도 초속 30만㎞인 광속과는 비교될 수 없을 정도로 느리기 때문이다. 그러나 물체가 일단 빛의 속도에 가까워지면 시간이 조금 이상해지기 시작한다. 이른바 시간 지연 현상이 나타나는 것이다. ​ 이 ‘시간 지연’이 우리의 실생활에 작용하고 있는 부분이 실제로 있다. 바로 차량의 내비게이션이 그것이다. 내비게이션에 위치 정보를 보내주는 인공위성은 초속 4㎞로 빨리 움직이므로 특수상대성 이론에 따라 하루에 7마이크로초(1μs=100만분의 1초) 씩 시간이 느려진다. 이 시간에 빛은 40m 이상을 달린다. 이 정도 위치 오차가 생기면 내비게이션은 아무짝에도 쓸모없게 된다. GPS가 매일 그만한 시간 지연과 함께 일반 상대성 이론에 따른 중력 관련 오차를 수정해주기 때문에 지상에서의 위치를 정확하게 추적할 수 있는 것이다. 이처럼 속도가 빛의 속도에 가까워질수록 시간은 느리게 간다. 특수 상대성에 따르면 우주에서 빛보다 빠르게 움직일 수는 없다. 우주에서의 제한속도는 바로 광속인 셈이다. 그렇다면 광속으로 달리는 빛 자체는 어떨까? 빛은 시간을 전혀 못 느낄까? 시간과 공간의 관계에 대한 우리의 지식은 특수 상대성 이론에 기초하고 있다. 이 이론은 모든 종류의 놀라운 결과를 산출하지만, 알고 보면 아주 간단한 아이디어에 기초를 두고 있다. 가장 중요한 것은 물리 법칙의 보편성에 대한 개념이다. 일반적으로 한 관찰자에게 일어나는 일은 다른 관찰자에게도 그대로 일어난다는 것을 의미한다. 맥스웰의 방정식은 빛의 속도가 일정하다고 말한다. 어떤 속도로 움직이든 모든 관찰자에게 빛은 일정한 속도로 측정된다는 뜻이다. 그래서 특수 상대성에 대한 우리의 지식을 빛에 적용할 때, 우리는 약간의 어려움을 겪는다. “빛이 어떻게 시간을 느낄까?”라는 질문에 답을 찾으려면 당신은 빛을 타고 달리는 기준계에 자신을 넣어야 한다. 그러면 그 기준계에서 볼 때 당신에게 빛은 고정되어 있는 것처럼 보일 것이다. 사실 아인슈타인이 특수 상대성 이론을 쓰게 된 것도 어린 시절 빛을 타고 달린다면 어떻게 될까 하는 상상에서 비롯된 것이었다. 그러나 이 같은 상황은 물리 법칙에 의해 허용되지 않는다. 따라서 빛과 함께 타는 그러한 기준계는 존재할 수 없다. 그리고 기준계가 없으면 특수 상대성 이론이 무너진다. 특수 상대성 이론이 없으면 공간과 시간의 관계를 측정할 방법이 없다. 그렇다면 이 모든 뒤틀림의 최종 결과는 무엇일까? 빛은 시간을 거의 느끼지 못한다는 것이다. 우리의 시간 개념은 빛에 적용되지 않는다. 빛은 시간을 모른다. 빛은 늙지 않는다. 이 글을 쓴 필자 폴 M. 서터는 미국 오하이오 주립대학의 천체물리학자이다. 이광식 칼럼니스트 joand999@naver.com 
  • [유용하 기자의 사이언스 톡] 화이트데이 = 파이 데이… 호킹이 우주로 떠난 날

    [유용하 기자의 사이언스 톡] 화이트데이 = 파이 데이… 호킹이 우주로 떠난 날

    ‘3월 14일’이라고 하면 가장 먼저 떠오르는 것은 무엇인가요. 사랑에 빠진 사람이라면 달콤한 사탕과 함께 한 아름 꽃다발 받기를 기대하며 ‘화이트데이’를 떠올리겠지요. 과학을 좀 아는 사람이라면 다른 것들이 연상될 겁니다. 우선 유럽이나 미국에서 3월 14일은 수학 시간에 원과 관련된 문제가 나올 때면 항상 등장하는 원주율 ‘π’(파이)를 의미하는 ‘파이데이’입니다. 원둘레를 지름으로 나눈 값인 π는 ‘둘레’를 의미하는 그리스어 ‘페리메트로스’(περιμετρο)의 제일 앞 글자를 따왔습니다. 원주율을 숫자로 표시하면 3.141592…로 길게 이어지는 무한소수입니다. 그래서 매년 3월 14일 오전 1시 59분이 되면 원주율 탄생을 축하하는 ‘파이데이 행사’가 전 세계 곳곳에서 열립니다. 보통 사람들에게 π는 수학 문제를 풀 때나 필요하지만 과학사를 보면 π의 정확한 값을 구하기 위해 오랜 시간 많은 과학자들이 도전했습니다. 원주율에 대한 관심은 건축기술이 발달한 고대 이집트에서 시작됐습니다. 그러던 중 그리스 수학자 아르키메데스가 원과 같은 넓이를 지닌 정사각형을 눈금 없는 자와 컴퍼스로만 그리는 ‘원적문제’를 해결하는 과정에서 3.14라는 근사값을 처음으로 유추해냈습니다. 17세기 말 영국의 아이작 뉴턴과 독일의 고트프리트 라이프니츠가 만든 미적분 덕분에 원주율 계산은 훨씬 수월해졌습니다. 1882년 독일 수학자 페르디난트 린데만이 π값이 무리수이면서 초월수라는 사실을 증명하면서 정확한 원주율 값을 찾으려는 시도들을 끝냈습니다. 그렇지만 요즘도 슈퍼컴퓨터 개발 후 성능시험을 할 때 무한소수인 원주율을 소수점 이하 몇 자리까지 계산할 수 있는지를 본답니다. 파이데이로 알려져 있던 3월 14일이 지난해부터는 과학계에 더욱 특별한 날이 됐습니다. 바로 뉴턴과 알베르트 아인슈타인의 계보를 잇는 금세기 최고의 이론물리학자 스티븐 호킹 박사가 타계한 날이기 때문입니다. 호킹 박사는 지동설을 주장한 갈릴레오 갈릴레이가 사망한 지 정확히 300년이었던 1942년 1월 8일에 태어나 상대성이론을 만들어 낸 아인슈타인이 태어난 지 109년이 되는 지난해 3월 14일, 아인슈타인과 똑같은 76세의 나이로 세상을 떠났습니다. 블랙홀 연구에 있어서 호킹 박사 이전과 이후로 나뉠 정도로 우주론에서 그의 영향은 상당합니다. 호킹 박사는 일반상대성 이론에서는 반드시 특이점이라는 것이 존재해야 한다는 것, 블랙홀도 에너지를 방출하기 때문에 반드시 검은색 구멍이라고 볼 수 없다는 점 두 가지를 증명해 냈습니다. 즉 일반상대성 이론에 따르면 빅뱅이나 블랙홀이 반드시 존재해야 하며 블랙홀 경계구간인 이벤트 호라이즌 근처에서는 블랙홀도 빛을 내고 에너지를 내뿜는 호킹 복사를 한다는 것을 밝혀낸 것입니다. 그의 연구 덕분에 영화 ‘인터스텔라’도 가능했다고 하면 지나친 말일까요. 호킹 박사의 젊은 시절을 그린 영화 ‘사랑에 대한 모든 것’을 보면 그는 삶을 즐길 줄 아는 ‘로맨티스트’였음을 알 수 있습니다. 화이트데이이자 호킹 박사의 기일을 맞아 그가 평소에 입버릇처럼 한 말이 다시 생각납니다. “당신이 사랑하는 사람들이 살고 있는 곳이 아니라면 이 큰 우주도 별 의미가 없을 것입니다.” 밤하늘의 별이 된 호킹 박사를 생각하며 사랑으로 가득 찬 하루가 됐으면 좋겠습니다. edmondy@seoul.co.kr
위로